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1 Introduction

Political districting is the task of partitioning a state into geographic-based dis-
tricts for election purposes. These districts may elect a single representative
(single-member district) or multiple representatives (multi-member district).
The voting method determines how ballots in each district are combined to select
representatives (e.g., majority, plurality, and ranked choice voting [97, 108]).
In the United States, districts typically are single-member and use plural-
ity voting (“most votes wins”). This includes all congressional districts (which
elect individuals to the US House of Representatives) and most state legisla-
tive districts (which elect individuals to the respective state governments). For
example, Oklahoma is divided into five congressional districts as depicted in
Figure 1 (which send representatives to the US Capitol in Washington, DC), 48
state senate districts (which send state senators to the Oklahoma State Capitol
in Oklahoma City, OK), and 101 state house districts (which send state represen-
tatives to the Oklahoma State Capitol). The number of congressional seats that
each state receives is determined by their respective populations, a process called
apportionment [6], while the number of legislative districts is set by state law.

Figure 1: Oklahoma’s five congressional districts, 2022-present

These districts are redrawn every ten years, following the census. A primary
motivation is that district populations change over time and must be rebalanced.



Current practice in the USA is that most congressional districts satisfy 1-person
deviation, e.g., each of Oklahoma’s congressional districts was redrawn in 2022
to have a population of either 791,870 or 791,871 (according to 2020 census
counts). Larger deviations of 5% from the mean are permitted by the courts
for legislative districts [32, 61]. These population balance constraints are not
numerically specified in US federal law, but have emerged from the “one person,
one vote” revolution of Supreme Court cases like Baker v. Carr (1962), Wesberry
v. Sanders (1964), and Reynolds v. Sims (1964). Federal law in the USA also
includes the Voting Rights Act, which requires that districts not dilute the
voting power of minority groups [57], see Thornburg v. Gingles (1986) and Allen
v. Milligan (2023). Simultaneously, the Equal Protection Clause of the 14th
Amendment to the US Constitution prohibits race from “predominating” the
districting process [61], see Shaw v. Reno (1993) and Miller v. Johnson (1995).

States impose additional laws on redistricting [32]. For example, most states
require districts to be contiguous on the map. Other traditional districting prin-
ciples include that districts should be compact and preserve political subdivi-
sions (e.g., counties, cities, towns, wards), communities of interest, and cores of
prior districts [82]. Despite these additional “soft” constraints, the set of feasible
solutions remains astronomically large, enabling mapmakers to draw plans that
favor a political party (partisan gerrymander) or incumbent politicians (incum-
bent gerrymander). Given that partisan-controlled state legislatures typically
draw the lines, there is incentive to continue gerrymandering, and the Supreme
Court has neglected to intervene, see Rucho v. Common Cause (2019).

Nevertheless, reform groups have had some success in establishing indepen-
dent redistricting commissions (IRCs) to draw district lines. IRCs may be in-
structed to follow traditional redistricting principles, in what might be called
procedural fairness [103]. Still, it has been observed that traditional redistrict-
ing principles may inadvertently favor one political party over another [26],
in ways that are hard to predict [40]. This prompts the explicit considera-
tion of other criteria like partisan fairness, competitiveness, or proportional-
ity [15, 16, 30, 40, 52, 60, 96, 99].

For more information, we refer the reader to the recent book edited by
Duchin and Walch [43] (an instant classic), the operations research survey of
Ricca et al. [90], and the legal guides by Hebert et al. [61] and Davis et al. [32].
Other related surveys include [20, 55, 58, 59, 69, 75, 92, 105, 111].

Outline. Section 2 summarizes some of the criteria and objectives in dis-
tricting, along with associated complexity results. Section 3 discusses sampling
procedures which are used to understand the distribution of possible districting
plans. Section 4 covers heuristic approaches to districting, including construc-
tion heuristics (which generate districts from scratch) and local search heuristics
(which improve an initial plan with respect to given criteria). Section 5 provides
mathematical optimization models for districting. We conclude in Section 6.



2 Criteria and Complexity

We can represent each state as a simple (undirected) graph G = (V, E). The
vertices V' represent the basic geographic units (e.g., counties, census tracts,
census blocks, voting precincts) used to construct districts, and the edges E
indicate which pairs of geographic units are adjacent on the map. Figure 2
illustrates Oklahoma’s county-level graph. In rook adjacency, geographic units
u and v must share a border of positive length for the edge {u,v} to be in E;
the less common queen adjacency only requires v and v to meet at a point.
Under rook adjacency, the graph G is planar and very sparse, with the numbers
of vertices n = |V| and edges m = |E| satisfying m < 3n — 6 if n > 3; queen
adjacency permits complete graphs with m = (g) edges on “pizza pie” instances.

The vertices adjacent to vertex 4 constitute its neighborhood N (i) = {j €
V | {i,j} € E}. The subgraph induced by a subset of vertices S C V is denoted
by G[S] = (S, E(S)) where E(S) is the subset of edges with both endpoints in
S. We say that a district D C V is connected in the graph (or contiguous on
the map) if its induced subgraph G[S] is connected.

Each geographic unit ¢ € V has an associated population p;. Given a subset
of geographic units S C V', their combined population is given by the shorthand
p(S) := > ;cgpi- The ideal district population p(V')/k is the state’s total pop-
ulation p(V') divided by the predefined number of districts k. The smallest and
largest populations permitted in a district are denoted by L and U. In 1-person
deviation, we have L = |p(V)/k] and U = [p(V')/k]. In 10% deviation (£5%),
we have L = [0.95p(V)/k] and U = |1.05p(V) /k|.

Figure 2: Oklahoma’s county-level graph

The districting problem, in its simplest form, is to partition the vertices
V into k districts (Dy, Da,..., D) such that each district is contiguous and
population-balanced, i.e., each district D; should be connected and satisfy L <
p(D;) < U. Unfortunately, this problem is already NP-hard for unit populations
(pp=1forie€V)and L =U = 3, see [44]. Even if the contiguity constraints
are relaxed, NP-hardness persists as it can express the PARTITION problem [3].

In practice, the population balance constraints are less of an issue than
the worst-case complexity would suggest. Intuitively, the reason is that hard



instances of PARTITION involve large integers, while districts are often built from
census blocks, which can have single digit (or zero) populations. Contiguity is
often blamed for the practical difficulty, with Ricca et al. [90] stating that “it
is particularly difficult to deal with and [is often] discarded from [districting]
models and considered only a posteriori”. We have also found the large size
of districting instances to be a challenge, with many states having hundreds
of thousands of census blocks. Another challenge is the many criteria that
districting plans are supposed to satisfy and the many ways to quantify them.

As an example, consider compactness, which is the idea that a district should
have a “nice” shape. Dozens of alternative compactness scores have been pro-
posed over the years, with many viewing circles and squares to be the most
compact [83]. In the optimization literature, the first was the moment-of-inertia
(MOTI), proposed by Hess et al. [64]. Taking inspiration from physics, the MOI
of a single district D C V' is calculated as ) ;) pid?j where d;; is the Euclidean
distance between the (centers of) geographic units ¢ and j on the map and j is
the district’s “center”, chosen so as to minimize this sum. A (once) popular score
among political scientists is the length-width score, which compares the length
and width of the district, with a ratio of one indicating ideal compactness. It is
easy to draw districts that look awful but score well according this score [112].
The Polsby-Popper score [87], which is currently the most popular score in the
redistricting literature and in expert testimony [37], is defined as 47 A/P? where
A is the district’s area and P is the district’s perimeter. It takes values between
zero and one, with circular districts achieving a perfect score of one. This score,
and others that rely on the district’s perimeter length, are subject to the Coast-
line Paradoz, which roughly states that district perimeters are not well-defined
and depend on the choice of map projection and the “size of your ruler” [7, 8].
Recently, the number of cut edges between districts has become one of the
more prominent compactness scores among mathematicians, computer scien-
tists, statisticians, and operations researchers because it is simple, is less prone
to abuse, reasonably agrees with the “eyeball test”, and is well-suited for math-
ematical, computational, and probabilistic analysis [13, 34, 36, 65, 77, 88, 101].

Likewise, there are many ways to quantify how well political subdivisions,
say, counties, are preserved. We could count how many counties are divided
across districts, how many times counties are divided across districts, or examine
the extent to which they are divided (e.g., a county that is divided 90/10 across
two districts may be “less” split than a county that is divided 50/50). For a more
involved discussion, we refer the reader to [12, 23, 54, 104]. Similar approaches
can be used to quantify the preservation of communities of interest.

We refer the reader to other resources on quantifying or “operationalizing”
partisan fairness, proportionality, and competitiveness [16, 30, 40, 52, 60, 96, 99].

3 Sampling Methods

Over the last twenty years, Massachusetts has had either 9 or 10 congressional
districts, and all of them have elected Democrats. This is despite the fact that



30% to 40% of the state’s votes went to Republicans. Does this indicate an in-
tent to gerrymander? The answer turns out to be no. Duchin et al. [39] find that
it is impossible to draw a Republican-majority district in Massachusetts built
from voting precincts. The reason is that Republicans are distributed nearly
uniformly throughout the state. Intuitively, if all precincts voted 40% Republi-
can, then all districts built from precincts would likewise vote 40% Republican
and thus elect Democrats. So, disproportionate outcomes are not necessarily a
sign of intentional gerrymandering.

To arrive at intent, a better approach is to randomly draw districting plans
to see what outcomes are likely to have occurred by chance. If a proposed or
enacted plan is an outlier in this distribution of possible plans (say, with respect
to the number of districts won by a particular party), then this may suggest
an intent to gerrymander. To make this approach rigorous, we would need to
determine which districting plans should not be sampled (e.g., if they violate
population balance or contiguity) and what probability we should attach to each
remaining plan (e.g., favoring compact plans over snaking, fractal-like districts).
This is where sampling, ensemble, or “simulation” methods enter the picture.

Many ensemble methods take a Markov chain Monte Carlo (MCMC) ap-
proach [2, 28, 29, 34, 35, 47, 63, 114]. From an initial districting plan, the
approach randomly “walks” to similar, neighboring plans, say, by flipping a ver-
tex from one district to a neighboring district, or swapping two vertices between
neighboring districts. These flip or swap neighborhoods have empirically been
found to “mix” slowly, meaning that the approach may not adequately search
or sample the solution space in a reasonable number of iterations, cf. [81].

This motivated DeFord et al. [36] to propose a new neighborhood called
recombination. In ReCom, two adjacent districts are merged into a double dis-
trict, a spanning tree is randomly drawn over their nodes, and an edge is deleted
to split the tree into two subtrees which are taken as the two new districts (pro-
vided that they are feasible). Empirically, this approach gets “lost” quickly with,
say, the 10,000th districting plan being nothing like the initial plan. Further,
the closely associated spanning tree distribution favors compact districts [21, 88].
The GerryChain software package provides an open-source Python implementa-
tion [80], cf. a Julia implementation [91]. Despite their practical success, ReCom
and other ensemble methods are not guaranteed to mix quickly [25].

Recent works seek to incorporate more “rules of the game” into the approach,
like preserving political subdivisions [5, 30, 77] and ensuring minority represen-
tation [11, 22], cf. [27, 41, 42]. They may also use an explicit target distribu-
tion, like the spanning tree distribution [5, 21, 77], to make the approach more
credible. In particular, McCartan and Imai [77] propose an entirely different
approach called sequential Monte Carlo (SMC) which avoids the Markov Chain
altogether; it builds a batch of districting plans by carving districts off one-by-
one, also with random spanning trees and edge deletions. Kenny et al. [70] use
the approach to evaluate the nationwide effects of partisan gerrymandering [78].



4 Heuristic Methods

Heuristics are inexact procedures used to find “good enough” solutions to an
optimization problem [1]. In particular, construction heuristics build a feasible
solution from scratch and have been proposed for political districting since at
least 1961 [103]. We refer the reader to the survey of Becker and Solomon [13,
Sec. 3.1] for a nice introduction and Ricca et al. [90, Sec. 3.1] for additional
references to the literature. One high-level approach is to identify a set of k
vertices to “seed” the districts and grow the districts outwards. Another high-
level approach is to build districts one-at-a-time by carving them from the state.

Local search heuristics start with a feasible solution and (repeatedly) make
small changes to improve its performance with respect to given criteria. Tradi-
tionally, local search heuristics for districting have used either a flip neighbor-
hood or a swap neighborhood, sometimes with specialized techniques that ex-
ploit planarity to speed up the connectivity checks at each iteration [71, 72, 73].
To escape local optima, many researchers and practitioners adopt metaheuristic
techniques such as simulated annealing, tabu search, and genetic algorithms.
Again, we refer the reader to [13, 90] for pointers to many papers in this area.

The success of DeFord et al.’s recombination neighborhood [36] has prompted
researchers to use it for heuristic optimization purposes. Some researchers apply
ReCom in an MCMC fashion and pluck out those that are satisfactory or per-
form best. Duchin and Schoenbach [40] take this approach to find proportional
districting plans. Cannon et al. [22] likewise take an unbiased ReCom walk for
a small number of steps, but then restart the walk from the best-performing
solution, with the aim of maximizing the number of minority-opportunity dis-
tricts, cf. [11]. This “short bursts” approach has also been used in the search
for plans that are Pareto optimal with respect to compactness and population
balance [76]. Geodert et al. [56] use a mix of ReCom and flip moves, with flip
moves becoming more prevalent throughout the procedure, to optimize weighted
combinations of Black representation and compactness. Swamy et al. [98] also
use a mix of ReCom and flip moves to draw districts for Arizona, considering
compactness, partisan fairness, competitiveness, and the number of majority-
minority districts. Other researchers find the best (rather than a random) move
in the ReCom neighborhood, merging and redividing up to four districts at a
time to minimize the number of county splits [93]. Because the ReCom neigh-
borhood contains exponentially many districting plans—many more than the
flip or swap neighborhoods—it is no longer feasible to use brute force enumer-
ation to find the best plan in this neighborhood, thus requiring the solution of
an optimization problem at each iteration.

Inspired by work of Henzinger et al. [62] on graph partitioning, Belotti et
al. [14] propose another local search neighborhood for political districting called
the h-hop neighborhood. The idea is that vertices deep within a district are
required to stay in their current district, while vertices near a district border
are permitted to switch to a different nearby district. More formally, a vertex
v € D is permitted to switch to a different district D’ (in the next iteration)
if there is a vertex v’ € D’ with hop-based distance distg(v,v’) < h. When



the user-chosen parameter h is relatively small, say h € {1,2}, the associated
optimization problem is relatively easy to solve. For example, Belotti et al. [14]
apply the approach to optimize the Polsby-Popper compactness score.

5 Optimization Methods

This section covers mathematical optimization models for political districting.
We categorize the models based on the their primary decision variables. Exam-
ple Python codes for several districting models are available on GitHub at
https://github.com/AustinlBuchanan/Districting-Examples-2020.

5.1 Using Hess Variables

Motivated by the landmark “one person, one vote” Supreme Court cases of the
1960s, Hess et al. [64, 107] proposed the first optimization model for political
districting. The binary variable z;; equals one when vertex i € V' is assigned to
the district centered at vertex j € V with z;; = 1 indicating that j is a center.

min Z Zpidfjxij (1&)

i€V jev

st Y ay =1 VieV (1b)
JEV
Z .’I?jj =k (IC)
jev
Ll‘jj S Zp,-xij S U,Ijj Vj S V (1(1)

i€V

Tij < X5 Vi,j eV (Le)
Ti5 € {0, 1} Vi,j e V. (1f)

The objective (1a) minimizes the moment-of-inertia. Assignment constraints (1b)
ensure that each vertex is assigned to one district. Constraint (1c) requires k
district centers to be selected. Population balance constraints (1d) require each
district to have a population between L and U. The coupling constraints (1e)
were not originally imposed by Hess et al. but help to strengthen the linear pro-
gramming (LP) relaxation. As written, this model lacks contiguity constraints.
Due to computer and software limitations of the time, Hess et al. [64] solved
this integer program heuristically. A main insight is that, after the district cen-
ters have been selected, the resulting subproblem is essentially a transportation
problem, which can be solved efficiently, cf. [49, 53]. Afterwards, we have a
partition of the vertices into districts (D1, Da, ..., Dy). Within each district D,
identify the best vertex j € D to serve as its center, i.e., the vertex j that min-
imizes ), p pid?j. With these new district centers, re-solve the transportation
problem and repeat until convergence, much like the popular k-means heuristic.
See Lawless and Giinliik [74] for a recent variant with representation constraints.



To impose contiguity, Shirabe [94, 95] proposes a formulation in which “fow”
originates at each district center and is sent across the district’s edges to “fuel”
its other nodes, cf. [84, 102]. In particular, introduce the variable fi, to indicate
how much flow, originating from district center j, is sent across the directed edge
(u,v). To the original n? Hess variables, this adds 2nm flow variables, which
is O(n?) if G has m = O(n) edges (true for planar G). The constraints below
ensure that each non-center vertex is fueled (2a), flow of type j can enter vertex

i only if 4 is assigned to j (2b), and flow cannot re-enter a center (2c).

S (F— ) =y Vie V\{j}, VieV (2a)
u€N (3)

S f< (- VieV\{j},VieV (2b)
wEN (7)

> f;=0 Viev (2¢)
wEN(F)

b [ >0 v{i,j} € E, Vv e V. (2d)

These constraints are arguably the most popular contiguity constraints in the
literature, e.g., being used by Validi et al [102] for county-level instances of
the moment-of-inertia objective and Swamy et al. [99] for objectives relating
to partisan symmetry, efficiency gap, and competitiveness. Shahmizad and
Buchanan [93] use them to solve the so-called county clustering problem which
provides a strong lower bound on the minimum number of county splits, cf. [23].

Another approach for imposing contiguity uses separator inequalities [19, 24,
48, 84, 106], cf. [89]. When applied to Hess variables, they take the form

(@, b-separator inequality) Taj +xp; <1+ Z Tej
ceC

where a and b are nonadjacent vertices and C C V' \ {a, b} is an a, b-separator,
i.e., there is no path between a and b in the subgraph G[V'\ C|. Because there are
exponentially many of these constraints, they are typically applied in a branch-
and-cut fashion. Validi et al. [102] show that, for planar graphs, the associated
separation problem is solvable in time O(n?logn) and O(n?) for fractional and
integer x, respectively. In their experiments with the MOI objective, they find
that few of these inequalities are necessary, allowing for some instances with
up to 1,500 vertices to be solved exactly. By exploiting the population balance
constraints, they also write stronger length-U a, b-separator inequalities.
Finally, we consider some contiguity constraints that are fast in practice, but
are invalid in the sense that they cut off feasible points. First, we have the tree-
based contiguity constraints of Zoltners and Sinha [115]; after finding a shortest
paths tree rooted at a particular vertex j, impose constraints of the form z;; <
x,j for i € V'\ {j} where v is the predecessor of ¢ in the tree. These constraints
can been relaxed to distance-based contiguity constraints [31, 60, 79, 85], which
allow more solutions and take the form z;; < zv Zy;, Where the sum is over all



neighbors v € N(i) that are nearer to j, i.e., dist(v,5) < dist(4,j). Onal and
Patrick [85] use these constraints to draw plans for Illinois that fare better than
the enacted plan with respect to county splits and minority representation. To
allow even more solutions, we can use DAG-based contiguity constraints [93] in
which the edges of G are oriented away from j in an acyclic fashion and impose
x5 < ZU Zyj, where the sum is over all in-neighbors of 7 in the orientation.

In the spirit of Beasley [10], Hojati [66] proposes a Lagrangian relaxation of
the Hess model in which population balance (1d) is first imposed strictly (L =
U). Then, the population balance constraints and assignment constraints (1b)
are relaxed, with their violation penalized in the objective function with respect
to the Lagrange multipliers. This results in a Lagrangian relaxation model that
is easy to solve combinatorially and that satisfies the “integrality property”,
implying that the Lagrangian relaxation bound coming from the best Lagrange
multipliers equals that of the LP relaxation. Motivation for using Lagrangian
relaxation instead of LP relaxation included that the Lagrangian was easier
to solve and less memory-intensive, especially using LP software of the day.
Later, Validi et al. [102] propose a similar Lagrangian relaxation model where
L < U, and use it to fix z;; = 0 when it can be deduced that z;; = 1 would
be suboptimal, making rigorous earlier approaches that heuristically fix such
variables [85]. They also exploit the contiguity constraints in the Lagrangian
relaxation, using it to solve instances of the Hess model with 1,500 vertices.

5.2 Using Labeling Variables

Another class of integer programming models uses labeling or assignment vari-
ables of the form x;; which equal one when vertex 7 € V is assigned to dis-
trict j € [k] := {1,2,...,k}. Because the number of districts is usually much
smaller than the number of vertices, labeling models are typically smaller than
Hess models. For example, if applied to Oklahoma’s |V| = 1,205 census tracts
and k£ = 5 congressional districts, there would be 6,025 labeling variables or
1,452,025 Hess variables. A typical use of labeling models is to minimize the
number of cut edges between districts [13, 17, 46, 68, 93, 101]. So, introduce a
binary variable y. for each edge e € E indicating whether it is cut and write:

min Z Ye (3a)

ecE

St Xy — Toj < Ye Ve = {u,v} € E, Vj € [k] (3b)

k
Zﬁij =1 VieV (?)C)
j=1
L<> piay <U vielk]  (3d)
eV

Tij € {0, 1} VieV, Vj e [k] (3@)
ye € {0,1} Ve € E. (3f)



One notable drawback of labeling formulations is symmetry; the same districting
plan can be represented in k! different ways by permuting the district labels [68].
Consequently, even if we added valid inequalities to recover the convex hull in
the x-space of variables, the LP relaxation would still allow the point (Z, %)
where § = 0 by setting Z,; = 1/k for all ¢ € V and j € [k], see [101]. One way
to avoid this symmetry is to apply the extended formulation for partitioning or-
bitopes due to Faenza and Kaibel [45], cf. [101], which forces the districts to be
sorted lexicographically. Another computational speedup comes by exploiting
the population balance constraints, specifically the population lower bounds L,
in a procedure called L-fixing [101]. Many forms of the contiguity constraints
that were previously discussed for Hess models can be adapted to the labeling
context, such as the Shirabe model [94, 95, 101], separator constraints [101],
as well as a notable single-commodity flow formulation from Hojny et al. [67],
cf. [18]. Ferreira et al. [46] propose valid inequalities and an extended formula-
tion to strengthen the cut edge LP relaxation which are also very helpful [101].

Labeling models can also be applied to minimize the sum of district perime-
ters [101], as this amounts to a weighted cut edges objective. Belotti et al. [14]
extend the model to handle the Polsby-Popper score in a mixed-integer second-
order cone program (MISOCP). They apply the MISOCPs to draw compact
majority-minority districts, including a case study motivated by the Supreme
Court case Allen v. Milligan (2023) in which they draw a compact plan for
Alabama that has two Black-majority districts. Fravel et al. [50] extend the la-
beling model to handle or estimate nonconvex objectives relating to the Polsby-
Popper score, Black representation, and partisan outcomes. Arredondo et al. [4]
use a labeling model focused on Indigenous representation in Mexico.

5.3 Using District Variables

In a completely different class of optimization models, introduce a binary vari-
able zp and a cost cp for each possible district D € D. Then, a set partitioning
model over the district variables can be written as follows.

min Z CDI D (4&)

DeD

st. Y ap=1 VieV (4b)
DeD:ieD
Z rp = k (4C>
DeD
zp €4{0,1} VD e D. (4d)

When Garfinkel and Nemhauser [51] first introduced this model for districting,
they took a two-step approach. The first step was to enumerate all suitable
districts D € D, and the second step was to solve the resulting set partitioning
model (4). Nowadays, a typical strategy for “solving” models like these (with
exponentially many variables) is to first solve the LP relaxation using column
generation and then solve the associated integer program over the generated
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columns. A related optimization-based heuristic was adopted by Mehrotra et
al. [79]. More recently, Gurnee and Shmoys [60] take a column generation
approach, using stochastic hierarchical partitioning to quickly generate many
columns, with an eye towards fairness. To truly solve the set partitioning IP, one
would likely need to take a branch-and-price approach [9], which is essentially
branch-and-bound where the LP relaxations are solved using column generation.
However, to the best of our knowledge, the political districting literature does
not contain any ezact branch-and-price implementations, although Borndorfer
et al. [18] test their approach on related commercial territory design instances.

5.4 Using Spanning Tree Edge Variables

Recognizing that connected districts admit spanning trees, we could define a
variable z. that equals one if the endpoints of edge e belong to the same district
and if this edge is selected as part of the district’s spanning tree. By adding k—1
other edges to these spanning trees’ edges, we can obtain a spanning tree for the
entire graph. Indeed, there is a linear-size extended formulation for spanning
trees in planar graphs due to Williams [109, 110]; see [86, 100] for corrections to
this model. With this modeling primitive, we can write a linear-size formulation
for partitioning the vertices of a planar graph into k components that is integral.
Unfortunately, Zhang et al. [113] find that, when population balance is imposed,
the integrality of the formulation is destroyed, and it performs worse than the
Hess model. It is an open question whether this spanning tree model can be
redeemed with alternative population balance constraints.

6 Conclusion

Political districting remains a challenging problem for optimization methods.
This is partially due to the large size of districting instances and the many
objectives and criteria that one must deal with. This is not to say that op-
timization cannot have an impact, but rather to emphasize the mathematical
and computational ingenuity that is required, as well as the familiarity with the
entirety of the districting literature, including political science, computer sci-
ence, mathematics, and litigation [38]. Optimization can be a powerful tool for
districting, to illuminate tradeoffs between districting criteria and to show the
limits of what is possible. Indeed, in an amicus brief cited by the Supreme Court
in Allen v. Milligan (2023), a team of comptutational redistricting experts wrote
that “optimization algorithms are well-suited to the task of generating [remedial
plans in VRA litigation]. . . as they can identify innovative combinations of geog-
raphy that better comply with multiple traditional redistricting principles than
any individual mapmaker is likely to find manually through trial and error” [33].
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See Also

Graph Partitioning
Optimal Transport in Location-Allocation Problems
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