Why is maximum clique often easy in practice?

Jose L. Walteros (@TotalUnimodular) University at Buffalo

Austin L. Buchanan (@AustinLBuchanan) Oklahoma State University

What is a clique?

Luce and Perry (1949) introduced "clique" as ideal cluster in social network. Also appears in bioinformatics, telecommunications, \ldots

Definition

A clique $C \subseteq V$ in graph G = (V, E) is a subset of pairwise adjacent vertices.

<u>Common task</u>: find a *maximum* clique. Its size is denoted $\omega(G)$. Here, $\omega = 4$. Issue: NP-hard (Cook, 1971), to get $n^{1-\varepsilon}$ approximation (Zuckerman, 2006).

Max clique can be hard

Some synthetic graphs from DIMACS2. Times from Prosser (2012).

graph	n	m	ω	time (s)
brock800_1	800	207,505	23	>14,400
brock800_2	800	208,166	24	>14,400
brock800 3	800	207,333	25	>14,400
hamming $10-4$	1,024	434,176	40	>14,400
johnson32-2-4	496	107,880	16	>14,400
keller5	776	225,990	27	>14,400
keller6	3,361	4,619,898	\geq 59	>14,400
MANN a81	3,321	5,506,380	\geq 1,100	>14,400
p hat700-3	700	183,010	≥62	>14,400
p_hat1000-3	1,000	371,746	\geq 68	>14,400
p_hat1500-2	1,500	568,960	\geq 65	>14,400
p_hat1500-3	1,500	847,244	\geq 94	>14,400

Max clique is often easy

Some real-life graphs from DIMACS10 & SNAP.

graph	n	m	ω	time (s)
coAuthorsDBLP	299,067	977,676	115	0.04
web-NotreDame	325,729	1,090,108	155	0.07
coPapersCiteseer	434,102	16,036,720	845	0.17
coPapersDBLP	540,486	15,245,729	337	0.20
web-BerkStan	685,230	6,649,470	201	0.25
eu-2005	862,664	16,138,468	387	0.50
in-2004	1,382,908	13,591,473	489	0.47
wiki-Talk	2,394,385	4,659,565	26	36.92
uk-2002	18,520,486	261,787,258	944	15.72

Why? What's different?

A closer look at synthetic instances

Graph degeneracy d is one measure of sparsity. A useful fact is $\omega \leq d + 1$.

graph	n	m	ω	d + 1	g	time (s)
brock800_1	800	207,505	23	488	465	>14,400
brock800_2	800	208,166	24	487	463	>14,400
brock800_3	800	207,333	25	484	459	>14,400
hamming10-4	1,024	434,176	40	849	809	>14,400
johnson32-2-4	496	107,880	16	436	420	>14,400
keller5	776	225,990	27	561	534	>14,400
keller6	3,361	4,619,898	\geq 59	2,691	≤2,632	>14,400
MANN_a81	3,321	5,506,380	\geq 1,100	3,281	\leq 2,181	>14,400
p_hat700-3	700	183,010	\geq 62	427	\leq 365	>14,400
p_hat1000-3	1,000	371,746	\geq 68	610	\leq 542	>14,400
p_hat1500-2	1,500	568,960	\geq 65	505	\leq 440	>14,400
p_hat1500-3	1,500	847,244	\geq 94	930	\leq 836	>14,400

Definition

The clique-core gap of a graph G is $g := (d+1) - \omega$.

A closer look at real-life instances

graph	n	m	ω	d + 1	g	time (s)
coAuthorsDBLP	299,067	977,676	115	115	0	0.04
web-NotreDame	325,729	1,090,108	155	156	1	0.07
coPapersCiteseer	434,102	16,036,720	845	845	0	0.17
coPapersDBLP	540,486	15,245,729	337	337	0	0.20
web-BerkStan	685,230	6,649,470	201	202	1	0.25
eu-2005	862,664	16,138,468	387	389	2	0.50
in-2004	1,382,908	13,591,473	489	489	0	0.47
wiki-Talk	2,394,385	4,659,565	26	132	106	36.92
uk-2002	18,520,486	261,787,258	944	944	0	15.72

Observation: real-life graphs often have tiny g and are very easy.

- Is this pattern more than a coincidence?
- Must hard instances have large g?
- Are small g instances always easy?

YES!

Theorem

When g = O(1), maximum clique solvable in $O(dm) = O(m^{1.5})$ time.

Overview of the rest of the talk

- 1. Background
 - degeneracy and k-cores
 - the connection with vertex cover
 - kernelization and fpt for vertex cover
- 2. Our proposed algorithm
- 3. Computational experiments

Degeneracy is a graph invariant that measures sparsity.

(degeneracy) = (largest k such that k-core exists) = (width) = (linkage)

Definition (Degeneracy)

The degeneracy of a graph G is the max-min-degree over all subgraphs G'.

$$\mathbf{d}(G) = \max_{G' \subseteq G} \left\{ \min_{v \in V(G')} \{ \deg_{G'}(v) \} \right\}.$$

- d(tree) = 1
- $\mathbf{d}(C_n) = 2$
- $d(planar) \le 5$
- $\mathbf{d}(K_n) = n 1$

Remark

By the definition, $d(G) \ge \omega(G) - 1$. In other words, $\omega(G) \le d(G) + 1$.

Computing degeneracy

Theorem (Matula and Beck, 1983)

Degeneracy can be computed in linear time by repeatedly removing a minimum degree vertex.

This gives a minimum degree (MD) ordering (v_1, v_2, \ldots, v_n) of the vertices. The right-degree $rdeg(v_i)$ of each vertex v_i is at most d. Importantly,

$$\boldsymbol{d} = \max_{i} \{ \operatorname{rdeg}(v_i) \}.$$

Importantly, these right-neighborhoods are all "small"!

This insight used to:

- enumerate all maximal cliques
 - in time $O(dn3^{d/3})$ by Eppstein et al. (2010).
- find a maximum clique
 - in time $O(nm + n2^{d/4})$ by B et al. (2014).
 - in time $O((n-d)2^{d/4})$ by Manoussakis (2014).

These are fixed-parameter tractable (fpt) with respect to d, i.e., runtime of

 $f(\mathbf{d}) \cdot \operatorname{poly}(n).$

These might not be practical when $d \ge 100$.

Recall. . .

graph	n	m	ω	d + 1	g	time (s)
coAuthorsDBLP	299,067	977,676	115	115	0	0.04
web-NotreDame	325,729	1,090,108	155	156	1	0.07
coPapersCiteseer	434,102	16,036,720	845	845	0	0.17
coPapersDBLP	540,486	15,245,729	337	337	0	0.20
web-BerkStan	685,230	6,649,470	201	202	1	0.25
eu-2005	862,664	16,138,468	387	389	2	0.50
in-2004	1,382,908	13,591,473	489	489	0	0.47
wiki-Talk	2,394,385	4,659,565	26	132	106	36.92
uk-2002	18,520,486	261,787,258	944	944	0	15.72

What would really be nice is fpt with respect to g!

The Connection to Vertex Cover

Lemma

Letting α and τ denote the independence and vertex cover numbers,

$$\omega(G) = \alpha(\overline{G}) = n - \tau(\overline{G}).$$

$$3 = 3 = 6 - 3.$$

Vertex Cover is FPT

Does G = (V, E) have a vertex cover of size k?

Nemhauser-Trotter Kernel

1. Get optimal solution
$$x^* \in \left\{0, \frac{1}{2}, 1\right\}^n$$
 to

$$LP := \min_{x \ge 0} \left\{ \sum_{v \in V} x_v \mid x_i + x_j \ge 1, \ \forall \{i, j\} \in E \right\},\$$

- 2. If LP > k, then "no";
- 3. Else, work on the kernel (G F Z, k |F|), where

 $F = \{ v \in V \mid x_v^* = 1 \}$ $Z = \{ v \in V \mid x_v^* = 0 \}.$

Importantly, kernel has at most 2k vertices! $\implies k$ -VC in time $O^*(2^{2k})$ With additional ideas, Chen et al. (2010) reduce time to $O(kn + 1.2738^k)$.

The Connection to Vertex Cover

Lemma

Letting α and τ denote the independence and vertex cover numbers,

$$\omega(G) = \alpha(\overline{G}) = n - \tau(\overline{G}).$$

Is the "FPT-ness" of Vertex Cover exploitable?

Some calculations

Does graph Wiki-Talk have a clique of size d + 1? (Is g = 0?)

- n = 2,394,385
- d + 1 = 132

Equivalently, does \overline{G} have a vertex cover of size k?

- $\overline{n} = 2,394,385$
- $\overline{m} \approx 3$ trillion
- k = 2,394,253

Back to the MD Ordering

Let V'_i be the closed right-neighborhood of v_i .

Does any subgraph $G[V'_i]$ have a clique of size d + 1? (Is g = 0?)

Back to the MD Ordering

Let V'_i be the closed right-neighborhood of v_i .

Equivalently, does any $\overline{G}[V'_i]$ have a vertex cover of size $|V'_i| - (d+1)$?

Our Proposed Algorithm

Does G have a clique of size (d+1) - p? (Is $g \le p$?)

main(G, p)

- 1. compute an MD ordering (v_1, v_2, \ldots, v_n) and degeneracy d of G;
- 2. let $D = \{v_i \in V \mid i \le n d, \operatorname{rdeg}(v_i) \ge d p\};$
- for v_i ∈ D do

 construct G
 [V_i], where V_i is the open right-neighborhood of v_i;
 if G
 [V_i] has a vertex cover of size q_i := |V_i| + p d, return "yes";

 construct G
 [V_f], where V_f = {v_f,..., v_n} and f := n d + 1;
 if G
 [V_f] has a vertex cover of size q_f := p 1, return "yes";
 return "no".

Important observations: $|V_i| \leq d$ and $q_i \leq p$.

Main Complexity Results

Theorem

Algorithm main determines whether graph G of degeneracy d has a clique of size (d + 1) - p in time $O((n - d)(1.28^p + d^2))$ and space O(m + poly(d)).

Theorem

When p is a constant, algorithm main runs in time $O(dm) = O(m^{1.5})$.

Remark: A linear-time special case

If p = 0 and the *d*-core of *G* is *d*-regular, then main runs in linear time

Corollary

Let $g := (d+1) - \omega$ be the clique-core gap. We can compute ω

- **1**. *in time* 1.28^{g} poly(*n*);
- 2. in time $O(dm) = O(m^{1.5})$ when g is a constant;
- 3. in polynomial time when $g = O(\log n)$.

- 60 instances, 50 from Verma et al. (2015), 10 from Rossi et al. (2015)
- DIMACS-10 and SNAP repositories
- Nine categories: (1) citation networks, (2) synthetic graphs, (3) peer-to-peer Internet networks, (4) online social networks, (5) web, (6) sparse matrices, (7) communication networks, (8) road networks, and (9) product networks

Type	Source	Name	n	m	Δ	d	ω	g
	SNAP	Cit-HepTh	27,770	352,285	2,468	37	23	15
	SNAP	Cit-HepPh	34,546	420,877	846	30	19	12
	DIMACS_10	coAuthorsCiteseer	227,320	814,134	1,372	86	87	0
	DIMACS_10	citationCiteseer	268,495	1,156,647	1,318	15	13	3
Citation	DIMACS_10	coAuthorsDBLP	299,067	977,676	336	114	115	0
	DIMACS_10	coPapersCiteseer	434,102	16,036,720	1,188	844	845	0
	DIMACS_10	coPapersDBLP	540,486	15,245,729	3,299	336	337	0
	DIMACS_10	er-fact1.5-scale20	1,048,576	10,904,496	45	14	3	12
	SNAP	cit-Patents	3,774,768	16,518,947	793	64	11	54
	DIMACS_10	delaunay_n16	65,536	196,575	17	4	4	1
	DIMACS_10	kron_g500-simple-logn16	65,536	2,456,071	17,997	432	136	297
	DIMACS_10	preferentialAttachment	100,000	499,985	983	5	6	0
	DIMACS_10	G_n_pin_pout	100,000	501,198	25	7	4	4
Synthetic	DIMACS_10	smallworld	100,000	499,998	17	7	6	2
	DIMACS_10	delaunay_n17	131,072	393,176	17	4	4	1
	DIMACS_10	delaunay_n18	262,144	786,396	21	4	4	1
	DIMACS_10	rgg_n_2_21_s0	2,097,152	14,487,995	37	18	19	0
	DIMACS_10	rgg_n_2_22_s0	4,194,304	30,359,198	36	19	20	0
	DIMACS_10	rgg_n_2_23_s0	8,388,608	63,501,393	40	20	21	0
	DIMACS_10	rgg_n_2_24_s0	16,777,216	89,345,197	40	20	21	0
	SNAP	p2p-Gnutella04	10,876	39,994	103	7	4	4
	SNAP	p2p-Gnutella25	22,687	54,705	66	5	4	2
	DIMACS_10	as-22july06	22,963	48,436	2,390	25	17	9
Internet topology	SNAP	p2p-Gnutella24	26,518	65,369	355	5	4	2
and peer-to-peer	SNAP	p2p-Gnutella30	36,682	88,328	55	7	4	4
	SNAP	p2p-Gnutella31	62,586	147,892	95	6	4	3
	DIMACS_10	caidaRouterLevel	192,244	609,066	1,071	32	17	16
	SNAP	as-skitter	1,696,415	11,095,298	35,455	111	67	45

Type	Source	Name	n	m	Δ	d	ω	g
	SNAP	wiki-Vote	7,115	100,762	1,065	53	17	37
	SNAP	soc-Epinions1	75,879	405,740	3,044	67	23	45
Social	SNAP	soc-Slashdot0811	77,360	469,180	2,539	54	26	29
	SNAP	soc-Slashdot0922	82,168	504,230	2,552	55	27	29
	SNAP	soc-pokec	1,632,803	22,301,964	14,854	47	29	19
	SNAP	soc-LiveJournal1	4,847,571	42,851,237	20,333	372	321	52
	SNAP	web-Stanford	281,903	1,992,636	38,625	71	61	11
	DIMACS_10	cnr-2000	325,557	2,738,969	18,236	83	84	0
Web	SNAP	web-NotreDame	325,729	1,090,108	10,721	155	155	1
	SNAP	web-BerkStan	685,230	$6,\!649,\!470$	84,230	201	201	1
	DIMACS_10	eu-2005	862,664	16, 138, 468	68,963	388	387	2
	SNAP	web-Google	875,713	4,322,051	6,332	44	44	1
	DIMACS_10	in-2004	1,382,908	13,591,473	21,869	488	489	0
	SNAP	wiki-topcats	1,791,489	25,444,207	238,342	99	39	61
	DIMACS_10	uk-2002	18,520,486	261,787,258	194,955	943	944	0
	DIMACS_10	wave	156,317	1,059,331	44	8	6	3
	DIMACS_10	audikw1	943,695	38,354,076	344	47	36	12
Sparse matrices	DIMACS_10	ldoor	952,203	22,785,136	76	34	21	14
	DIMACS_10	ecology1	1,000,000	1,998,000	4	2	2	1
	DIMACS_10	333SP	3,712,815	11,108,633	28	4	4	1
	DIMACS_10	cage15	5,154,859	47,022,346	46	25	6	20
Boad	DIMACS 10	luxembourg osm	114 599	119 666	6	2	3	0
TUAL	DIMACS 10	helgium osm	1 441 295	1 549 970	10	3	3	1
	D101100510	beigium.03m	1,111,230	1,010,010	10	9		1

Type	Source	Name	n	m	Δ	d	ω	\boldsymbol{g}
	SNAP	email-Enron	36,692	183,831	1,383	43	20	24
	DIMACS_10	cond-mat-2005	40,421	175,691	278	29	30	0
Communication	SNAP	email-EuAll	265,214	364,481	7,636	37	16	22
	SNAP	wiki-Talk	2,394,385	4,659,565	100,029	131	26	106
	SNAP	com-Orkut	3,072,441	$117,\!185,\!083$	33,313	253	51	203
	SNAP	Amazon0302	262,111	899,792	420	6	7	0
Product	SNAP	Amazon0312	400,727	2,349,869	2,747	10	11	0
co-purchasing	SNAP	Amazon0601	403,394	2,443,408	2,752	10	11	0
	SNAP	Amazon0505	410,236	2,439,437	2,760	10	11	0

14 out of 60 instances are solved in linear time

Property	Name	n	m	d	ω	g	Time
	cond-mat-2005	40,421	175,691	29	30	0	0.00
	coAuthorsCiteseer	227,320	814,134	86	87	0	0.03
	coAuthorsDBLP	299,067	977,676	114	115	0	0.04
d-regular d-core	coPapersCiteseer	434,102	16,036,720	844	845	0	0.17
-	coPapersDBLP	540,486	15,245,729	336	337	0	0.20
	rgg_n_2_21_s0	2,097,152	14,487,995	18	19	0	0.55
	rgg_n_2_22_s0	4,194,304	30,359,198	19	20	0	1.33
	uk-2002	$18,\!520,\!486$	$261,\!787,\!258$	943	944	0	15.72
	preferentialAttachment	100,000	499,985	5	6	0	0.03
	cnr-2000	325,557	2,738,969	488	489	0	0.08
	Amazon0312	400,727	2,349,869	10	11	0	0.17
l = d + 1	in-2004	1,382,908	13,591,473	5	6	0	0.47
	rgg_n_2_23_s0	8,388,608	63,501,393	20	21	0	6.13
	rgg_n_2_24_s0	16,777,216	89,345,197	20	21	0	9.30

33 out of the other 46 are solved in under 1 second

All times obtained using same cluster:

- Linux x86 64, CentOS 7.1
- 12-core Intel Xeon E5-2640 v3 2.4GHz
- 128 GB RAM
- times exclude file I/O

Comparisons with single-thread implementations of:

(BWBP) Buchanan, Walteros, Butenko, Pardalos (Optimization Letters, 2014)

- (VBB) Verma, Buchanan, Butenko (INFORMS Journal on Computing, 2015)
- (RGG) Rossi, Gleich, Gebremedhin (SIAM Journal on Scientific Computing, 2015)

Results for parallel implementations are similar.

Instance	d	ω	g	main	BWBP	VBB	RGG
		10	10	0.10	0.04	0.10	0.10
Cit-Hep I h	30	19	12	0.18	0.34	0.12	0.19
Cit-HepPh	37	23	15	0.20	0.37	0.12	0.20
citationCiteseer	15	13	3	0.11	0.14	0.53	0.26
er-fact1.5-scale20	14	3	12	9.12	13.64	17.15	6.87
cit-Patents	64	11	54	4.52	5.29	12.79	5.89
1.1	4	4	1	0.05	0.00	0.00	0.00
delaunay_n10	4	4	1	0.05	0.08	0.22	0.09
kron_g500	432	136	297	$2,\!663.15$	815.16	335.94	13.31
$G_n_pin_pout$	7	4	4	0.27	0.50	0.42	0.23
smallworld	7	6	2	0.10	0.27	0.41	0.22
delaunay_n17	4	4	1	0.11	0.16	0.22	0.18
delaunay_n18	4	4	1	0.23	0.33	0.45	0.36
0.0.1.04	_			0.01	0.00	0.01	0.00
p2p-Gnutella04	1	4	4	0.01	0.03	0.01	0.02
p2p-Gnutella25	5	4	2	0.01	0.03	0.44	0.02
as-22july06	25	17	9	0.01	0.01	0.01	0.01
p2p-Gnutella24	5	4	2	0.01	0.04	0.69	0.02
p2p-Gnutella30	7	4	4	0.02	0.06	0.12	0.03
p2p-Gnutella31	6	4	3	0.04	0.10	0.07	0.05
caidaRouterLevel	32	17	16	0.09	0.12	0.23	0.15
as-skitter	111	67	45	1.68	2.57	6.21	2.74

Instance	d	ω	g	main	BWBP	VBB	RGG
wiki-Vote	53	17	37	0.27	0.21	0.10	0.09
soc-Epinions1	67	23	45	0.60	0.56	0.26	0.31
soc-Slashdot0811	54	26	29	0.29	0.33	0.15	0.20
soc-Slashdot0922	55	27	29	0.30	0.34	0.16	0.22
soc-pokec	47	29	19	13.50	12.93	19.45	11.20
soc-LiveJournal1	372	321	52	4.95	*	*	9.07
				0.17	0.05	0.00	0 50
web-Stanford	71	61	11	0.15	0.25	2.96	0.53
web-NotreDame	155	155	1	0.07	0.09	0.12	0.23
web-BerkStan	201	201	1	0.25	0.29	6.96	1.33
eu-2005	388	387	2	0.50	0.72	26.29	3.06
web-Google	44	44	1	0.33	0.35	1.15	0.82
wiki-topcats	99	39	61	12.58	14.94	*	20.04
	0	C	0	0.99	1.90	0.02	0.40
wave	8	0	3	0.33	1.39	0.63	0.49
audikw1	47	36	12	34.30	92.87	14.10	32.12
ldoor	34	21	14	19.04	36.58	10.79	14.36
ecology1	2	2	1	0.55	2.76	1.05	1.04
333SP	4	4	1	1.49	1.86	50.24	5.79
cage15	25	6	20	32.77	56.83	23.38	27.49

33/37

Instance	d	ω	g	main	BWBP	VBB	RGG
luxembourg.osm	2	3	0	0.02	0.02	0.18	0.01
belgium.osm	3	3	1	0.29	0.29	0.89	0.28
email-Enron	43	20	24	0.12	0.16	0.12	0.09
email-EuAll	37	16	22	0.09	0.11	0.12	0.12
wiki-Talk	131	26	106	36.92	3.89	5.82	5.25
com-Orkut	253	51	203	302.99	275.67	*	241.00
Amazon0302	6	7	0	0.09	0.09	0.32	0.17
Amazon0601	10	11	0	0.18	0.19	1.95	0.13
Amazon0505	10	11	0	0.18	0.19	2.19	0.13

We report shifted geometric means (unscaled and scaled) of single-threaded implementations. The shifting parameter was set to 1 second.

		main		BWBP		VBB		RGG	
Instance Class	Graphs	Unscaled	Scaled	Unscaled	Scaled	Unscaled	Scaled	Unscaled	Scaled
$g \in [0,1)$	18	0.73	1.00	1.55	2.11	3.06	4.17	0.96	1.31
$g \in [1, 10)$	20	0.21	1.00	0.36	1.75	1.12	5.37	0.47	2.25
$g \in [10, 100)$	19	2.55	1.00	5.09	1.99	3.36	2.49	2.65	1.04
$g \in [100, 1000)$	3	312.15	11.62	102.36	3.81	201.30	7.49	26.87	1.00
Real-life	49	1.30	1.00	2.06	1.58	4.29	3.30	1.43	1.10
All	60	1.50	1.02	2.28	1.55	3.80	2.58	1.48	1.00

Conclusion

Summary

- Our aim: Why is max clique often easy?
- Our explanation: Small clique-core gap g is common and exploitable
- Uses results from FPT literature
- · Competitive with previous algorithms
 - And we have worst-case guarantees!

Open questions

- 1. Can we test g = 0 in linear time?
 - Our approach takes time $\Omega(m^{1.5})$ on bipartite graphs $K_{d,2d}$.
- 2. Is there a practical parameterization for coloring?

References

- R. D. Luce and A. D. Perry. A method of matrix analysis of group structure. Psychometrika, 1949.
- S. A. Cook. The complexity of theorem-proving procedures. *Proceedings of the third annual ACM STOC*, 1971.
- D. Zuckerman. Linear degree extractors and the inapproximability of max clique and chromatic number. Proceedings of the thirty-eighth annual ACM STOC, 2006.
- P. Prosser. Exact algorithms for maximum clique: A computational study. Algorithms, 2012.
- D. W. Matula and L. L. Beck. Smallest-last ordering and clustering and graph coloring algorithms. Journal of the ACM, 1983.
- D. Eppstein, M. Löffler, and D. Strash. Listing all maximal cliques in sparse graphs in near-optimal time. Algorithms and Computation, 2010.
- A. Buchanan, J. L. Walteros, S. Butenko, P. M. Pardalos. Solving maximum clique in sparse graphs: an O(nm + n2^{d/4}) algorithm for d-degenerate graphs. Optimization Letters, 2014.
- G. Manoussakis. The clique problem on k-inductive graphs. arXiv preprint, 2014.
- G. L. Nemhauser and L. E. Trotter Jr. Vertex packings: structural properties and algorithms. Mathematical Programming, 1975.
- J. Chen, H. Fernau, I. A. Kanj, G. Xia. Improved upper bounds for vertex cover. Theoretical Computer Science, 2010.
- A. Verma, A. Buchanan, S. Butenko. Solving the maximum clique and vertex coloring problems on very large sparse networks. *INFORMS Journal on Computing*, 2015.
- R. A. Rossi, D. F. Gleich, A. H. Gebremedhin. Parallel maximum clique algorithms with applications to network analysis. SIAM Journal on Scientific Computing, 2015.