
Why is maximum clique often easy in practice?

Jose L. Walteros (@TotalUnimodular)
University at Buffalo

Austin L. Buchanan (@AustinLBuchanan)
Oklahoma State University

What is a clique?

Luce and Perry (1949) introduced “clique” as ideal cluster in social network.
Also appears in bioinformatics, telecommunications, . . .

0

3

19

2

7

8

5

4

6

Definition
A clique C ⊆ V in graph G = (V,E) is a subset of pairwise adjacent vertices.

Common task: find a maximum clique. Its size is denoted ω(G). Here, ω = 4.

Issue: NP-hard (Cook, 1971), to get n1−ε approximation (Zuckerman, 2006).

2 / 37

Max clique can be hard

Some synthetic graphs from DIMACS2. Times from Prosser (2012).

graph n m ω time (s)
brock800_1 800 207,505 23 >14,400
brock800_2 800 208,166 24 >14,400
brock800_3 800 207,333 25 >14,400
hamming10-4 1,024 434,176 40 >14,400
johnson32-2-4 496 107,880 16 >14,400
keller5 776 225,990 27 >14,400
keller6 3,361 4,619,898 ≥59 >14,400
MANN_a81 3,321 5,506,380 ≥1,100 >14,400
p_hat700-3 700 183,010 ≥62 >14,400
p_hat1000-3 1,000 371,746 ≥68 >14,400
p_hat1500-2 1,500 568,960 ≥65 >14,400
p_hat1500-3 1,500 847,244 ≥94 >14,400

3 / 37

Max clique is often easy

Some real-life graphs from DIMACS10 & SNAP.

graph n m ω time (s)
coAuthorsDBLP 299,067 977,676 115 0.04
web-NotreDame 325,729 1,090,108 155 0.07
coPapersCiteseer 434,102 16,036,720 845 0.17
coPapersDBLP 540,486 15,245,729 337 0.20
web-BerkStan 685,230 6,649,470 201 0.25
eu-2005 862,664 16,138,468 387 0.50
in-2004 1,382,908 13,591,473 489 0.47
wiki-Talk 2,394,385 4,659,565 26 36.92
uk-2002 18,520,486 261,787,258 944 15.72

4 / 37

Why? What’s different?

5 / 37

A closer look at synthetic instances

Graph degeneracy d is one measure of sparsity. A useful fact is ω ≤ d+ 1.
graph n m ω d+ 1 g time (s)
brock800_1 800 207,505 23 488 465 >14,400
brock800_2 800 208,166 24 487 463 >14,400
brock800_3 800 207,333 25 484 459 >14,400
hamming10-4 1,024 434,176 40 849 809 >14,400
johnson32-2-4 496 107,880 16 436 420 >14,400
keller5 776 225,990 27 561 534 >14,400
keller6 3,361 4,619,898 ≥59 2,691 ≤2,632 >14,400
MANN_a81 3,321 5,506,380 ≥1,100 3,281 ≤2,181 >14,400
p_hat700-3 700 183,010 ≥62 427 ≤365 >14,400
p_hat1000-3 1,000 371,746 ≥68 610 ≤542 >14,400
p_hat1500-2 1,500 568,960 ≥65 505 ≤440 >14,400
p_hat1500-3 1,500 847,244 ≥94 930 ≤836 >14,400

Definition
The clique-core gap of a graph G is g := (d+ 1)− ω.

6 / 37

A closer look at real-life instances

graph n m ω d+ 1 g time (s)
coAuthorsDBLP 299,067 977,676 115 115 0 0.04
web-NotreDame 325,729 1,090,108 155 156 1 0.07
coPapersCiteseer 434,102 16,036,720 845 845 0 0.17
coPapersDBLP 540,486 15,245,729 337 337 0 0.20
web-BerkStan 685,230 6,649,470 201 202 1 0.25
eu-2005 862,664 16,138,468 387 389 2 0.50
in-2004 1,382,908 13,591,473 489 489 0 0.47
wiki-Talk 2,394,385 4,659,565 26 132 106 36.92
uk-2002 18,520,486 261,787,258 944 944 0 15.72

Observation: real-life graphs often have tiny g and are very easy.

7 / 37

• Is this pattern more than a coincidence?
• Must hard instances have large g?
• Are small g instances always easy?

YES!

Theorem
When g = O(1), maximum clique solvable in O(dm) = O(m1.5) time.

8 / 37

Overview of the rest of the talk

1. Background
• degeneracy and k-cores
• the connection with vertex cover
• kernelization and fpt for vertex cover

2. Our proposed algorithm

3. Computational experiments

9 / 37

Degeneracy is a graph invariant that measures sparsity.

(degeneracy) = (largest k such that k-core exists) = (width) = (linkage)

Definition (Degeneracy)

The degeneracy of a graph G is the max-min-degree over all subgraphs G′.

d(G) = max
G′⊆G

{
min

v∈V (G′)
{degG′(v)}

}
.

• d(tree) = 1

• d(Cn) = 2

• d(planar) ≤ 5

• d(Kn) = n− 1

Remark
By the definition, d(G) ≥ ω(G)− 1. In other words, ω(G) ≤ d(G) + 1.

10 / 37

Computing degeneracy

Theorem (Matula and Beck, 1983)

Degeneracy can be computed in linear time by repeatedly removing a minimum
degree vertex.

0

3

19

2

7

8

5

4

6

7 9 1 2 0 6 4 3 5 8

3

This gives a minimum degree (MD) ordering (v1, v2, . . . , vn) of the vertices.
The right-degree rdeg(vi) of each vertex vi is at most d. Importantly,

d = max
i
{rdeg(vi)}.

11 / 37

FPT algorithms for maximum clique

Each clique will belong to one of these (closed) right-neighborhoods!

7 9 1 2 0 6 4 3 5 8

3

0

3

19

2

7

8

5

4

6

12 / 37

FPT algorithms for maximum clique

Each clique will belong to one of these (closed) right-neighborhoods!

7 9 1 2 0 6 4 3 5 8

3

0

3

19

2

7

8

5

4

6

13 / 37

FPT algorithms for maximum clique

Each clique will belong to one of these (closed) right-neighborhoods!

7 9 1 2 0 6 4 3 5 8

3

0

3

19

2

7

8

5

4

6

14 / 37

FPT algorithms for maximum clique

Each clique will belong to one of these (closed) right-neighborhoods!

7 9 1 2 0 6 4 3 5 8

3

0

3

19

2

7

8

5

4

6

15 / 37

FPT algorithms for maximum clique

Each clique will belong to one of these (closed) right-neighborhoods!

7 9 1 2 0 6 4 3 5 8

3

0

3

19

2

7

8

5

4

6

3

7

5

3

9

0

1

0 2

0 2

6

0

3

4

5 6

3

8

5

4

16 / 37

Importantly, these right-neighborhoods are all “small”!

This insight used to:
• enumerate all maximal cliques

• in time O(dn3d/3) by Eppstein et al. (2010).
• find a maximum clique

• in time O(nm + n2d/4) by B et al. (2014).
• in time O((n− d)2d/4) by Manoussakis (2014).

These are fixed-parameter tractable (fpt) with respect to d, i.e., runtime of

f(d) · poly(n).

These might not be practical when d ≥ 100.

17 / 37

Recall. . .

graph n m ω d+ 1 g time (s)
coAuthorsDBLP 299,067 977,676 115 115 0 0.04
web-NotreDame 325,729 1,090,108 155 156 1 0.07
coPapersCiteseer 434,102 16,036,720 845 845 0 0.17
coPapersDBLP 540,486 15,245,729 337 337 0 0.20
web-BerkStan 685,230 6,649,470 201 202 1 0.25
eu-2005 862,664 16,138,468 387 389 2 0.50
in-2004 1,382,908 13,591,473 489 489 0 0.47
wiki-Talk 2,394,385 4,659,565 26 132 106 36.92
uk-2002 18,520,486 261,787,258 944 944 0 15.72

What would really be nice is fpt with respect to g!

18 / 37

The Connection to Vertex Cover

Lemma
Letting α and τ denote the independence and vertex cover numbers,

ω(G) = α(G) = n− τ(G).

G

0

1

2

3

4

5

G

0

1

2

3

4

5

3 = 3 = 6− 3.

19 / 37

Vertex Cover is FPT

Does G = (V,E) have a vertex cover of size k?

Nemhauser-Trotter Kernel

1. Get optimal solution x∗ ∈
{
0, 1

2
, 1
}n to

LP := min
x≥0

{∑
v∈V

xv

∣∣∣∣∣ xi + xj ≥ 1, ∀{i, j} ∈ E

}
,

2. If LP > k, then “no”;

3. Else, work on the kernel (G− F − Z, k − |F |), where

F = {v ∈ V | x∗v = 1}
Z = {v ∈ V | x∗v = 0}.

Importantly, kernel has at most 2k vertices! =⇒ k-VC in time O∗(22k)
With additional ideas, Chen et al. (2010) reduce time to O(kn+ 1.2738k).

20 / 37

The Connection to Vertex Cover

Lemma
Letting α and τ denote the independence and vertex cover numbers,

ω(G) = α(G) = n− τ(G).

Is the “FPT-ness” of Vertex Cover exploitable?

Some calculations
Does graph Wiki-Talk have a clique of size d+ 1? (Is g = 0?)
• n = 2, 394, 385

• d+ 1 = 132

Equivalently, does G have a vertex cover of size k?
• n = 2, 394, 385

• m ≈ 3 trillion
• k = 2, 394, 253

21 / 37

Back to the MD Ordering

Let V ′i be the closed right-neighborhood of vi.

7 9 1 2 0 6 4 3 5 8

3

Does any subgraph G[V ′i] have a clique of size d+ 1? (Is g = 0?)

0

3

19

2

7

8

5

4

6

3

7

5

3

9

0

1

0 2

0 2

6

0

3

4

5 6

3

8

5

4

22 / 37

Back to the MD Ordering

Let V ′i be the closed right-neighborhood of vi.

7 9 1 2 0 6 4 3 5 8

3

Equivalently, does any G[V ′i] have a vertex cover of size |V ′i | − (d+ 1)?

0

3

19

2

7

8

5

4

6

3

7

5

3

9

0

1

0 2

0 2

6

0

3

4

5 6

3

8

5

4

23 / 37

Our Proposed Algorithm

Does G have a clique of size (d+ 1)− p? (Is g ≤ p?)

main(G, p)

1. compute an MD ordering (v1, v2, . . . , vn) and degeneracy d of G;

2. let D = {vi ∈ V | i ≤ n− d, rdeg(vi) ≥ d− p};
3. for vi ∈ D do

3.1 construct G[Vi], where Vi is the open right-neighborhood of vi;

3.2 if G[Vi] has a vertex cover of size qi := |Vi|+ p− d, return “yes”;

4. construct G[Vf], where Vf = {vf , . . . , vn} and f := n− d+ 1;

5. if G[Vf] has a vertex cover of size qf := p− 1, return “yes”;

6. return “no”.

Important observations: |Vi| ≤ d and qi ≤ p.

24 / 37

Main Complexity Results

Theorem
Algorithm main determines whether graph G of degeneracy d has a clique of
size (d+ 1)− p in time O((n− d)(1.28p + d2)) and space O(m+ poly(d)).

Theorem
When p is a constant, algorithm main runs in time O(dm) = O(m1.5).

Remark: A linear-time special case

If p = 0 and the d-core of G is d-regular, then main runs in linear time

Corollary

Let g := (d+ 1)− ω be the clique-core gap. We can compute ω

1. in time 1.28g poly(n);
2. in time O(dm) = O(m1.5) when g is a constant;
3. in polynomial time when g = O(logn).

25 / 37

Computational Experiments

• 60 instances, 50 from Verma et al. (2015), 10 from Rossi et al. (2015)
• DIMACS-10 and SNAP repositories
• Nine categories: (1) citation networks, (2) synthetic graphs, (3)
peer-to-peer Internet networks, (4) online social networks, (5) web, (6)
sparse matrices, (7) communication networks, (8) road networks, and (9)
product networks

26 / 37

Computational Experiments

27 / 37

Computational Experiments

28 / 37

Computational Experiments

29 / 37

Computational Experiments

14 out of 60 instances are solved in linear time

33 out of the other 46 are solved in under 1 second
30 / 37

Computational Experiments

All times obtained using same cluster:
• Linux x86_64, CentOS 7.1
• 12-core Intel Xeon E5-2640 v3 2.4GHz
• 128 GB RAM
• times exclude file I/O

Comparisons with single-thread implementations of:

(BWBP) Buchanan, Walteros, Butenko, Pardalos (Optimization Letters, 2014)

(VBB) Verma, Buchanan, Butenko (INFORMS Journal on Computing, 2015)

(RGG) Rossi, Gleich, Gebremedhin (SIAM Journal on Scientific Computing, 2015)

Results for parallel implementations are similar.

31 / 37

Computational Experiments

32 / 37

Computational Experiments

33 / 37

Computational Experiments

34 / 37

Computational Experiments

We report shifted geometric means (unscaled and scaled) of single-threaded
implementations. The shifting parameter was set to 1 second.

35 / 37

Conclusion

Summary
• Our aim: Why is max clique often easy?
• Our explanation: Small clique-core gap g is common and exploitable
• Uses results from FPT literature
• Competitive with previous algorithms

• And we have worst-case guarantees!

Open questions
1. Can we test g = 0 in linear time?

• Our approach takes time Ω(m1.5) on bipartite graphs Kd,2d.

2. Is there a practical parameterization for coloring?

36 / 37

References

• R. D. Luce and A. D. Perry. A method of matrix analysis of group structure. Psychometrika, 1949.
• S. A. Cook. The complexity of theorem-proving procedures. Proceedings of the third annual ACM

STOC, 1971.
• D. Zuckerman. Linear degree extractors and the inapproximability of max clique and chromatic

number. Proceedings of the thirty-eighth annual ACM STOC, 2006.
• P. Prosser. Exact algorithms for maximum clique: A computational study. Algorithms, 2012.
• D. W. Matula and L. L. Beck. Smallest-last ordering and clustering and graph coloring

algorithms. Journal of the ACM, 1983.
• D. Eppstein, M. Löffler, and D. Strash. Listing all maximal cliques in sparse graphs in

near-optimal time. Algorithms and Computation, 2010.
• A. Buchanan, J. L. Walteros, S. Butenko, P. M. Pardalos. Solving maximum clique in sparse

graphs: an O(nm + n2d/4) algorithm for d-degenerate graphs. Optimization Letters, 2014.
• G. Manoussakis. The clique problem on k-inductive graphs. arXiv preprint, 2014.
• G. L. Nemhauser and L. E. Trotter Jr. Vertex packings: structural properties and algorithms.

Mathematical Programming, 1975.
• J. Chen, H. Fernau, I. A. Kanj, G. Xia. Improved upper bounds for vertex cover. Theoretical

Computer Science, 2010.
• A. Verma, A. Buchanan, S. Butenko. Solving the maximum clique and vertex coloring problems

on very large sparse networks. INFORMS Journal on Computing, 2015.
• R. A. Rossi, D. F. Gleich, A. H. Gebremedhin. Parallel maximum clique algorithms with

applications to network analysis. SIAM Journal on Scientific Computing, 2015.

37 / 37

