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Abstract

This paper describes tight extended formulations for independent
set. The first formulation is for arbitrary independence systems and
has size O(n+ µ), where µ denotes the number of inclusion-wise max-
imal independent sets. Consequently, the extension complexity of the
independent set polytope of graphs is O(1.4423n). The size O(2twn)
of the second extended formulation depends on the treewidth tw of
the graph, which is a common measure of how tree-like it is. This im-
proves upon the size O(ntw+1) extended formulations implied by the
Sherali-Adams reformulation procedure (as shown by Bienstock and
Ozbay). This implies size O(n) extended formulations for outerplanar,
series-parallel, and Halin graphs; size 2O(

√
n) extended formulations for

planar graphs; and size O(1.2247n) extended formulations for graphs
of maximum degree three.

Keywords: independent set; extended formulation; stable set polytope;
treewidth; independence system; series-parallel; fpt extended formulations;

1 Introduction

Many combinatorial optimization problems are NP-hard and are unlikely
to be solvable in polynomial time. Since linear programs can be solved in

∗This paper was first made publicly available on September 15, 2014 on the preprint
website Optimization Online. Subsequently, an anonymous referee notified us that our
main result of a size O(2twn) extended formulation for independent set had been previously
shown by Monique Laurent using different techniques (see page 134 of the updated version
of [25]). In the months that followed, the size O(2twn) bound has been generalized for other
problems [2, 23, 24]. For these reasons, we have decided not to pursue the publication of
this paper in a journal. However, our proofs are different than those given in the previously
mentioned papers and may be valuable to some. In particular, we take advantage of the
framework for developing extended formulations due to Martin et al. [30].
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polynomial time, this suggests that any collection of linear programs that
encodes instances of an NP-hard problem must have superpolynomial size
(or at least must take superpolynomial time to construct). Indeed, recent
research has shown that NP-hard problems such as the traveling salesman
problem and the 0-1 knapsack problem admit no polynomial-size extended
formulation [15, 37]—irrespective of whether P = NP. Even worse, the
independent set problem does not even admit approximate extended formu-
lations of polynomial size, cf. [10, 11].

Consequently, there is no use in searching for extended formulations for
independent set that are of polynomial-size for all graphs. However, there
are classes of graphs that admit small (extended) formulations. For example,
it is known that the edge-formulation for the independent set problem is
tight if the graph is a tree (or, more generally, bipartite [18]). Moreover, the
maximum weight independent set problem can be solved in time O(2wn)
when given a tree decomposition of width w [6]1. This gives hope that
graphs that are sufficiently “tree-like” admit small extended formulations.

Indeed, as shown in Section 3, the independent set polytope admits an
extended formulation with O(2twn) variables and constraints, where tw de-
notes the graph’s treewidth. This implies small extended formulations for
independent set for particular classes of graphs. For example, it is known
that planar graphs have tw = O(

√
n); graphs of maximum degree three have

tw ≤ n/6 + o(n); and outerplanar graphs, series-parallel graphs, and Halin
graphs have treewidth bounded by a constant. (See the treewidth survey
of [5] for results of this type.) This extended formulation generalizes results
of Barahona and Mahjoub [1], who showed that series-parallel graphs admit
linear-size extended formulations. It also improves upon the size O(ntw+1)
extended formulations implied by the Sherali-Adams reformulation proce-
dure [39, 3].

The other extended formulation that we present is more general, ap-
plying to arbitrary independence systems. There is a trivial extended for-
mulation for an independence system’s polytope—just write the solution
vector as a convex combination of the at most 2n independent sets. In
fact, Braun et al. [9] declare 2n to be the best known upper bound for
the extension complexity of the independent set polytope of graphs. How-
ever, as we show in Section 2, this bound can be substantially improved
to O(3n/3) = O(1.4423n) by restricting ourselves to maximal independent
sets and then relaxing some equalities to inequalities. Another reason for

1Interestingly, there is reason to believe that this algorithm cannot be improved to
O(1.9999twpoly(n)) [27].
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studying this extended formulation is for comparison purposes—to show
that the size O(1.2247n) bound for graphs of maximum degree three is an
improvement over that for arbitrary graphs.

1.1 Preliminaries and related work

This paper is concerned primarily with extended formulations for indepen-
dent set, though the techniques surely apply to other problems. A key lemma
to prove the integrality of the treewidth-based formulation comes from Mar-
tin et al. [30], who show how to write a variety of dynamic programs as linear
programs. Recall that the size of an extended formulation is the number
of inequalities in its description [20]. For more information about extended
formulations in combinatorial optimization, consult the surveys of [14, 20].

We consider a simple graph G = (V,E) with vertex set V and edge set
E. Usually, we let n = |V | and m = |E|. A subset S ⊆ V of vertices
is said to be an independent set if no two vertices in S are adjacent. In
literature, independent sets are also referred to as stable sets and vertex
packings. The maximum (weight) independent set problem is the task of
finding a largest (weight) independent set in the graph. See the survey of [7]
for more information about this problem. The independent set polytope
P (G) of G is the convex hull of (characteristic vectors of) independent sets
of G. The characteristic vector xS of S has xSi = 1 if i ∈ S, and xSi = 0
otherwise.

P (G) = conv{xS ∈ {0, 1}n | S is an independent set of G}
= conv{x ∈ {0, 1}n | xi + xj ≤ 1 for every {i, j} ∈ E}

The structure of P (G) is well-studied in literature [36, 34, 35, 41, 1, 31]
and full characterizations of the independent set polytope are known for
several graph classes. For example, the edge inequalities and nonnegativity
bounds are sufficient precisely for bipartite graphs without isolated vertices.
A generalization of the edge inequality is the clique inequality

∑
i∈C xi ≤ 1,

where C ⊆ V is a clique, i.e., a subset of pairwise-adjacent vertices [36].
The clique inequalities and nonnegativity bounds are sufficient to describe
P (G) precisely when G is perfect [18]. While P (G) has a small description
for bipartite graphs, perfect graphs do not—at least in the original space of
variables. This is because there can be exponentially many maximal cliques
in perfect graphs, and each corresponding clique inequality induces a facet
of P (G). While the maximum independent set problem is polynomial-time
solvable in perfect graphs (via the ellipsoid method and the Lovász theta
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function [18]), there are no known polynomial-size extended formulations
for P (G) for arbitrary perfect graphs. The best known bound is nO(logn)

by Yannakakis [43]. However, there are polynomial size formulations for
comparability graphs and chordal graphs, which are subclasses of perfect
graphs [43].

Chvátal [13] conjectured that, for series-parallel graphs, the edge inequal-
ities, odd-hole inequalities, and 0-1 bounds are sufficient to describe P (G).
(An odd hole is an odd-cardinality subset H ⊆ V of vertices that induces

a cycle graph, and the inequality
∑

i∈H xi ≤
|H|−1

2 is valid for P (G) [36].)
That these inequalities are sufficient when G is series-parallel was proven
by Boulala and Uhry [8], but in French. For a short proof in English,
consult [28]. It has been noted [1] that P (G) for series-parallel graphs may
have exponentially many facets, yet they admit linear-size extended formula-
tions. Since series-parallel graphs have treewidth at most two, the extended
formulation provided in this paper generalizes the results of [1]. We note
that for any t-pefect graph (i.e., a graph whose independent set polytope is
well-described by the 0-1 bounds, edge inequalities, and odd-hole inequal-
ities) there are size O(n3) extended formulations [43], which are obtained
by writing the odd-hole separation problem within the linear program à la
Martin [29].

Pulleyblank and Shepherd [38] provide a dynamic programming algo-
rithm for the maximum independent set problem, whose runtime is polyno-
mial for distance claw-free graphs. These are the graphs such that for each
vertex, neither its neighborhood nor the set of nodes at distance two contain
an independent set of size three. They formulate the dynamic program as a
linear program of polynomial-size for distance claw-free graphs.

Perhaps the most interesting relationship between the independent set
polytope and treewidth is that, starting with the edge formulation for in-
dependent set, at most tw(G) levels of the Sherali-Adams [39] reformula-
tion procedure are needed to obtain P (G) [3]. This shows that for graphs
of bounded treewidth, there is a compact extended formulation for P (G).
However, the number of variables in the k-th level of the Sherali-Adams re-
formulation procedure is

(
n
k+1

)
= O(nk+1). In contrast, the treewidth-based

extended formulation proposed in this paper has size O(2twn), which is of
linear-size for graphs of bounded treewidth.

Very recently there has been a flurry of activity showing negative results
about the extension complexity of the independent set polytope. It has
been noted that any linear program achieving an O(n1/2−ε) approximation
for independent set has exponential size [10]. A stronger inapproximability
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of O(n1−ε) [11] holds under the uniform model (described in the follow-
ing). Note that these results are unconditional and do not depend on the
assumption that P 6= NP. Braun et al. [9] study the average case extension
complexity of independent set with two types of formulations in mind which
they call the uniform model and the non-uniform model. Essentially, the
uniform model requires that the formulation’s constraints be the same for
each n-vertex graph, while in the non-uniform model the constraints can
depend on the graph’s topology. In this sense, the extended formulations
proposed in this paper are non-uniform.

2 Formulation based on maximal independent sets

The first extended formulation is fairly simple and is based on introducing
a variable for each maximal independent set of the graph. The number µ
of maximal independent sets of a graph is at most 3n/3, and this bound
is tight on what we will call the MM graphs, which are the disjoint union
of n/3 triangles. Historically, MM referred to Moon and Moser [33], but
the same results were given several years earlier by Miller and Muller [32].
Further, all maximal independent sets of an arbitrary graph can be listed
in time O(3n/3) [12, 40]. In fact, there are output-sensitive algorithms that,
for example, list all maximal independent sets in time O(nmµ), where µ
denotes the number of maximal independent sets [42]. As a consequence,
if a graph has polynomially many maximal independent sets, not only does
its independent set polytope admit a compact extended formulation, but it
can be constructed in polynomial time.

While the focus of this paper is on the independent set polytope of
graphs, we will state the extended formulation for the more general case of
an arbitrary independence system. An independence system is a pair (I, I),
where I is a finite “ground” set and I is a collection of subsets of I satisfying:

1. (non-emptiness) ∅ ∈ I, and

2. (down-monotonicity) S ⊆ S′ ∈ I implies S ∈ I.

In the extended formulation below, x is the decision vector representing the
chosen independent set, and for every maximal independent set S, there is a
variable yS . Denote by IM the set of all inclusion-wise maximal independent
sets.

5



Extended Formulation 1:∑
S∈IM

yS = 1 (1)

xi ≤
∑

S∈IM :i∈S
yS , for every i ∈ I (2)

yS ≥ 0, for every maximal independent set S ∈ IM (3)

xi ≥ 0, for every i ∈ I (4)

Lemma 1. For an independence system (I, I), let F1(I, I) be the set of all
(x, y) satisfying constraints 1, 2, 3, 4. Then the projection of F1(I, I) onto
the x variables is precisely (I, I)’s independence system polytope P (I, I).

Proof. First see that P (I, I) ⊆ projx F1(I, I). Consider x′ ∈ P (I, I), which
we can assume, without loss of generality, is integer. Then x′ is the char-
acteristic vector of some independent set I which is a subset of a maximal
independent set I ′. Then the binary vector (x′, y′) belongs to F1(I, I), where
y′S = 1 iff I ′ = S.

To show P (I, I) ⊇ projx F1(I, I), let (u, v) ∈ F1(I, I). Then also
(x, v) ∈ F1(I, I), where, for each i ∈ I, xi :=

∑
S∈IM :i∈S vS . Note that

x ∈ P (I, I), since it belongs to the maximal independent set face of P (I, I).
Then, since 0 ≤ u ≤ x, and by down-monotonicity of P (I, I) (see, e.g., [19]),
we have u ∈ P (I, I).

Theorem 1. An independence system with n ground elements and µ maximal
independent sets admits an extended formulation of size O(n+ µ).

Corollary 1. The extension complexity of a graph’s independent set poly-
tope P (G) is O(3n/3).

It is not too hard to see that similar results hold if, instead of down-
monotonicity, we enforce up-monotonicity, i.e., that S ⊇ S′ ∈ I implies
S ∈ I. This allows us to write extended formulations for, say, the dominat-
ing set polytope of a graph with O(1.7159n) variables and constraints [16].
The extended formulation also implies that the dominating set polytope ad-
mits a compact extended formulation whenever the graph has polynomially
many minimal dominating sets. However, it is not yet clear if such an ex-
tended formulation could be constructed in polynomial time, as, to date,
there is no known output-polynomial time algorithm for enumerating min-
imal dominating sets [21]. This is to be expected for some independence
systems, as it has been shown that no algorithm lists all maximal inde-
pendent sets of an independence system in output-polynomial time, unless
P = NP [26].
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3 Formulation based on treewidth

The second extended formulation that we describe borrows ideas from a
treewidth-based dynamic programming algorithm for independent set. We
will first represent the problem as a network flow problem of sorts. The
directed network that we construct has hyperarcs, complicating the proof of
the linear programming formulation’s integrality. For clarity, we will refer
to the input graph of the independent set problem as a graph with vertices
and edges; the directed graph that represents the network flow problem will
be called a network with nodes and (hyper)arcs.

If we based the extended formulation on a pathwidth-based dynamic pro-
gramming algorithm, then there would be no hyperarcs. In this case, it is
pretty straightforward to achieve an extended formulation with O(2pwn) en-
tities, where pw denotes pathwidth. It turns out that pw(G) = O(tw(G) log n)
so this would yield polynomial-size extended formulations for graphs of
bounded treewidth. However, if we construct the formulation from a treewidth-
based dynamic programming algorithm, then we can make a stronger claim—
that graphs of bounded treewidth admit linear-size extended formulations
for their independent set polytopes.

Since there is the possibility for hyperarcs, the usual total unimodularity
argument is not enough to show that the proposed formulation is integral.
Fortunately for us, Martin et al. [30] have shown how to craft extended
formulations for these types of dynamic programs. We will only need to
construct the necessary directed acyclic hypergraph and show that it fits into
their paradigm. First, however, we will need some background information
about treewidth and the treewidth-based dynamic programming algorithm.

Definition 1. A tree decomposition of a graph G = (V,E) is a pair (B, T ),
where T = (J, F ) is a tree and B = {Bj | j ∈ J} is a collection of subsets of
V (each Bj is called a bag) such that

•
⋃
j∈J Bj = V ;

• for every edge {u, v} ∈ E there is a bag that contains u and v; and

• for all i, j, k ∈ J : if j is on the path from i to k in T then Bi∩Bk ⊆ Bj.

The width of the decomposition is maxi{|Bi|} − 1. The treewidth of G, de-
noted tw(G), is the minimum width among the tree decompositions of G.

The “−1” in the definition of width is merely a cosmetic detail done
so that the treewidth of a tree is one. A path decomposition is a tree
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decomposition, where T is further required to be a path graph. Pathwidth
is defined similarly.

While many problems are quickly solvable on graphs of small treewidth,
actually determining a graph’s treewidth is NP-hard. However, Bodlaen-
der’s theorem states that, for any fixed w, there is a linear-time algorithm
that finds a tree decomposition of width w (if one exists). Even though
Bodlaender’s algorithm runs in linear time for fixed w, its dependence on
w is very large and the algorithm is notoriously impractical. Still, there
are practical, linear-time algorithms for small values of treewidth, e.g., for
tw = 1, 2, 3, 4. Consult the surveys of Bodlaender for these and other facts
about treewidth [4, 5].

It will be convenient to work with a nice tree decomposition, and from
now on we will assume, without loss of generality, that our tree decompo-
sitions will be nice and will have O(n) bags. This follows by a standard
linear-time algorithm that, when given a tree decomposition, outputs a nice
tree decomposition of the same width and with at most 4n bags (see Lemma
13.1.2 of [22]).

Definition 2. A tree decomposition is nice if it is a rooted binary tree such
that each node j ∈ J is one of the following four types:

• Leaf nodes j are leaves of T and have |Bj | = 1.

• Introduce nodes j have one child c with Bj = Bc+v for some vertex
v ∈ V .

• Forget nodes j have one child c with Bj = Bc − v for some vertex
v ∈ V .

• Join nodes j have two children c1 and c2 with Bj = Bc1 = Bc2.

We will now describe the treewidth-based dynamic programming algo-
rithm for weighted independent set [6]. For each bag Bj ⊆ V and for every
subset S ⊆ Bj of the bag, let f(j, S) be the weight of a maximum weight
independent set I of the subgraph induced by Vj such that S = I∩Bj . Here,
Vj is the union of Bj along with all of its descendant bags (not necessarily
direct descendants). Whenever S is itself not independent, the subproblem
is infeasible with the convention that its objective is −∞. The formula for
computing f(j, S) depends on the type of bag Bj . The weight of a vertex v
is denoted wv, and the weight of S ⊆ V is denoted by w(S) :=

∑
v∈S wv.

• Leaf node, where Bj = {v}. Set f(j, ∅) = 0 and f(j, {v}) = wv.

8



• Introduce node, where Bj = Bc + v. For every S ⊆ Bc, set

f(j, S) = f(c, S), and

f(j, S + v) =

{
wv + f(c, S) if S + v is independent
−∞ otherwise.

• Forget node, where Bj = Bc − v. For every S ⊆ Bj , set

f(j, S) = max{f(c, S), f(c, S + v)}.

• Join node, where Bj = Bc1 = Bc2 . For every S ⊆ Bj , set

f(j, S) = f(c1, S) + f(c2, S)− w(S).

The objective of the maximum independent set problem for the origi-
nal graph can be found by looking at the root bag Br and computing the
maximum of f(r, S) such that S ⊆ Br.

Notice that the algorithm does not depend on the graph’s structure,
in the sense that dependent subsets are penalized in the objective with
a weight of −∞, instead of being explicitly excluded during algorithm’s
execution. For example, the complete graph on n nodes and the empty
graph on n nodes both admit the trivial tree decomposition where a single
bag contains all vertices. The algorithm’s execution on these two graphs with
the trivial decomposition is essentially the same, and hence, a polyhedral
representation of this dynamic programming algorithm will not describe the
graph’s independent set polytope. Hard constraints are necessary.

We are now ready to construct our directed acyclic hypergraph D =
(N,A) that will model the treewidth-based dynamic programming algorithm
for the independent set problem for a graph G = (V,E). The main idea is
to disallow nodes that represent infeasible solutions, i.e., dependent subsets
of vertices. We can assume, without loss of generality, that the given tree
decomposition is nicer and has width w.

Definition 3. A nicer tree decomposition is nice tree decomposition with
O(n) bags that is rooted at an empty bag.

The node set N is created as follows. For every bag Bj in the tree decom-
position, and for every subset S ⊆ Bj that is independent in G (including
the empty set), create a node Sj . This implies, by the nicer tree decompo-
sition, a single node t = ∅r ∈ N from the empty root bag Br that we will
call the sink node. Finally, for every leaf bag Bj , create a source node sj .
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The number of nodes is |N | = O(2wn), since there are O(n) bags, and for
each bag Bj there are at most 2|Bj | ≤ 2w+1 independent sets.

The arc set A will allow a partial solution to “grow” at introduce bags
and “shrink” at forget bags. Create A as follows depending on the type of
bag Bj .

• Leaf node, whereBj = {v}. Add the arcs (∅, sj), (sj , ∅j), and (sj , {v}j).
Note that (∅, sj) is strange in that it has no tail and is called a bound-
ary arc in Theorem 2.

• Introduce node, where Bj = Bc+v. For every independent S ⊆ Bc,
add the arc (Sc, Sj) and if S+ v is also independent, then add the arc
(Sc, (S + v)j).

• Forget node, where Bj = Bc − v. For every independent S ⊆ Bj ,
add the arc (Sc, Sj), and if S + v is also independent, then add the
arc ((S + v)c, Sj).

• Join node, where Bj = Bc1 = Bc2 . For every independent subset
S ⊆ Bj , add the hyperarc ({Sc1 , Sc2}, Sj).

The c in Sc and (S + v)c refers to bag Bc and not to the set’s complement.
Examples of the constructed hypergraphs can be found in Figures 1, 2,

and 5. Figure 1 illustrates the most basic case, where each node in the
directed network represents at most one vertex in the input graph and there
are no ‘join’ bags in the tree decomposition. Figure 2 shows an example
where some bags contain independent sets of size two. Figure 3 shows the
smallest graph with tw = 1 and pw = 2. A nicer tree decomposition and
constructed hypergraph follow in Figures 4 and 5. Since the given tree
decomposition has ‘join’ bags, there are hyperarcs in the directed network.

We are now ready to provide the extended formulation. For each (hy-
per)arc a ∈ A of D, there is a variable ya representing the amount of flow
across it. As usual, x is the decision vector representing the chosen inde-
pendent set of G. For a node v ∈ N , δout(v) is the set of (hyper)arcs that
have v as (one of) its tail(s). The set δin(v) is defined similarly. The set
FORGET(v) is the set of all arcs that “forget” v ∈ N , i.e., arcs of the form
((S + v)c, Sj). The polytope F2(G) is the set of all (x, y) satisfying the
following constraints.
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{1} {1, 2} {2} {2, 3} {3} ∅

s ∅

{1}

∅

{1}

{2}

∅

{2}

∅

{2}

{3}

∅

{3}

t

Figure 1: A nicer tree decomposition of P3 (the path on 3 vertices) and
the proposed construction D. (This is also a nice path decomposition.)
There are no “join” nodes in the tree decomposition, so there is no need for
hyperarcs.

{1} {1, 2} {1, 2, 5} {2, 5} {2, 3, 5} {3, 5} {3, 4, 5} {4, 5} {5} ∅

s ∅

{1}
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{2}

∅

{1}

{2}

{5}

{2, 5}

∅

{2}

{5}
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∅

{2}

{3}

{5}

{2, 5}

{3, 5}

∅

{3}

{5}

{3, 5}

∅

{3}

{4}

{5}

{3, 5}

∅

{4}

{5}

∅

{5}

t

Figure 2: A width-2 nicer tree decomposition of the cycle graph on five ver-
tices and the proposed construction D. (This is also a path decomposition.)
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Figure 3: A tree (of pathwidth 2).
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{3} {2, 3} {2} {1, 2} {1} ∅

Figure 4: A nicer tree decomposition of width 1 that is rooted at the right.
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{1}

{2}

∅
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Figure 5: The proposed directed acyclic hypergraph D. Since there is a
“join” node in the tree decomposition, D has hyperarcs.
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Extended Formulation 2:∑
a∈δin(t)

ya = 1, for sink node t (5)

∑
a∈δout(v)

ya −
∑

a∈δin(v)

ya = 0, for every node v ∈ N \ {t} (6)

xi −
∑

a∈FORGET(i)

ya = 0, for every vertex i ∈ V (7)

ya ≥ 0, for every (hyper)arc a (8)

Theorem 2 (Martin et al. [30]). Let H = (V,A) be a directed hypergraph
such that

1. each hyperarc has a single head, i.e., hyperarcs are of the form (J, i)
where J ⊆ V and i ∈ V;

2. H is acyclic; more specifically, there is a mapping σ : V → R such that
for every hyperarc (J, i) ∈ A and every j ∈ J , we have σ(j) < σ(i);

3. there is finite set Q and a mapping f : V → 2Q such that

(a) f is “consistent” with the acyclicity, namely, for every hyperarc
(J, i) ∈ A and for every j ∈ J , we have f(j) ⊆ f(i);

(b) for every hyperarc (J, i) ∈ A and for distinct “tails” j, j′ ∈ J of
the hyperarc, we have f(j) ∩ f(j′) = ∅;

(c) there is a single “sink” node t with f(t) = Q.

4. every i ∈ V has at least one incoming arc. Since the graph is acyclic
this implies that some arcs (called boundary arcs) will have no tail
nodes, i.e., arcs of the type (J, i) with J = ∅.

Then, the set of all z satisfying the following constraints is a 0-1 polytope.∑
a=(J,t)∈A

za = 1 (9)

∑
a=(J,i)∈A

za −
∑

a=(J,j)∈A:i∈J

za = 0, for every node i ∈ V \ {t} (10)

za ≥ 0, ∀a ∈ A. (11)

Lemma 2. projy(F2(G)) is a 0-1 polytope.
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Proof. Apply Theorem 2. The directed hypergraph that we constructed
clearly satisfies points 1, 2, and 4. For point 3, let Q be the set of source
nodes, and for v ∈ N , let f(v) be the set of source nodes from which there
is a directed path to v in D.

Lemma 3. In a nicer tree decomposition, each vertex is ‘forgotten’ once,
i.e., for each v ∈ V , there is one pair (Bj , Bc) of bags, where Bj is the
parent of Bc, such that Bj = Bc − v.

Proof. Each vertex is forgotten at least once, since each vertex belongs to
at least one bag and all vertices have been forgotten by the empty root bag.
Now suppose that a vertex is forgotten at least twice, so that there are dis-
tinct bags Bj1 = Bc1 − v and Bj2 = Bc2 − v that forget v. We consider
two cases. In the first case, assume that one of the bags that forgets v is a
descendant of the other bag that forgets v. Without loss of generality sup-
pose that Bj2 is a descendant of Bj1 . Then, bags Bc2 and Bc1 both contain
v, but bag Bj2 does not, yet it lies between Bc1 and Bc2 , contradicting the
tree decomposition. In the second case, Bj1 is neither a descendant nor an
ancestor of Bj2 . In this case, they lie in different branches of the tree and
both of Bj1 and Bj2 lie on the unique path between Bc1 and Bc2 , and the
same contradiction occurs.

Note that for a feasible solution (x, y) to F2(G) there will be one unit of
flow ‘from’ bag Bc ‘to’ its parent Bj . For example, when Bj = Bc − v, we
have ∑

a=(Sc,Sj)∈A
s.t. S⊆Bc is independent

ya +
∑

a=((S+v)c,Sj)∈A
s.t. S+v⊆Bj is independent

ya = 1. (12)

If this flow were greater (less) than one, then the flow into the sink node t
would be greater (less) than one, violating constraint (5).

Lemma 4. F2(G) is a 0-1 polytope.

Proof. First see that F2(G) is an integral polytope, since projy(F2(G)) is a
0-1 polytope (by Lemma 2), and since there is a nonnegative integer matrix
M such that x = My. Now we must show that the x variables are bounded
by zero and one. By Lemma 3, for any vertex v ∈ V , there will be one bag
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Bj = Bc − v that forgets v. Then, for any (x, y) ∈ F2(G), we have that

0 ≤ xv =
∑

a∈FORGET(v)

ya

≤
∑

a=(Sc,Sj)∈A
s.t. S⊆Bc is independent

ya +
∑

a∈FORGET(v)

ya

=
∑

a=(Sc,Sj)∈A
s.t. S⊆Bc is independent

ya +
∑

a=((S+v)c,Sj)∈A
s.t. S+v⊆Bj is independent

ya = 1.

Lemma 5. P (G) ⊆ projx(F2(G)).

Proof. Consider x ∈ P (G). Without loss of generality, suppose that x is an
extreme point of P (G), and is thus the characteristic vector of an indepen-
dent set I. We construct an integral feasible point of F2(G) as follows. For
every non-boundary arc a = (Sc1, S

j
2) ∈ A that is not a hyperarc, set

ya =

{
1, if S1 = Bc ∩ I and S2 = Bj ∩ I
0, otherwise

For each boundary arc, set the corresponding variable to one. Similarly, for
every hyperarc, say a = ({Sc1 , Sc2}, Sj) ∈ A, set ya = 1 iff S = Bj ∩ I.
Then, for every arc, say a = (sj , S

i), emanating from a source node sj , set
ya = 1 iff S = Bi ∩ I. It can be verified that (x, y) ∈ F2(G).

Lemma 6. projx(F2(G)) ⊆ P (G).

Proof. Consider (x′, y′) ∈ F2(G). Without loss of generality, suppose that
(x′, y′) is an extreme point of F2(G). By Lemma 4, this means that (x′, y′)
is 0-1. We are to show that x′ ∈ P (G). By the flow constraints of F2(G), the
integrality of (x′, y′), and equality (12), the set of all arcs with positive flow
induce a directed tree of D—a sort of reverse arborescence rooted at the sink
∅t with the boundary arcs at the leaves. We claim that S′ := {i ∈ V | x′i > 0}
is an independent set in G. Suppose not, then there exist adjacent u, v ∈
S′. By the tree decomposition, there is a bag Bj1 that contains u and v.

Further, there is a unique path (Sj11 , S
j2
2 , S

j3
3 , . . . , ∅t) leading to the sink node

∅t crossing only arcs of nonzero flow. Notice that, by Lemma 3, there is a
single opportunity to “forget” u and a single opportunity to “forget” v along
this path, and both arcs must be taken to have xu > 0 and xv > 0. Moreover,
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u and v cannot be re-introduced along this path, since this would contradict
the tree decomposition. This implies that Sj11 must contain both u and v,
but this contradicts the construction of N , since for every node Sj1 ∈ N , S
is independent in G. Thus, S′ is independent, so x′ = xS

′ ∈ P (G).

Theorem 3. The extension complexity of a graph’s independent set polytope
is O(2twn), where tw denotes its treewidth.

Proof. Lemmata 5 and 6 show that projx(F2(G)) = P (G). Since F2(G) has
size O(2twn), the result follows.

4 Conclusion

There is a trivial extended formulation for the independent set polytope—
just take a convex combination of the O(2n) independent sets of the graph.
In this paper, we show how to significantly improve this bound, based on two
different approaches. In the first we take ideas from the convex combination
approach, but restrict ourselves to maximal independent sets and then re-
lax some equalities to inequalities. As we show in Section 2, this approach
achieves an extended formulation with O(n+ µ) entities for arbitrary inde-
pendence systems with µ maximal independent sets. In the second extended
formulation, described in Section 3, we use ideas from dynamic programming
and treewidth tw to achieve an extended formulation with O(2twn) entities.

It should be noted that neither of the two extended formulations pro-
posed in this paper always gives a smaller size bound. For example, the
number µ(Pn) of maximal independent sets of the n-vertex path graph
Pn satisfies the recurrence µ(Pn) = µ(Pn−2) + µ(Pn−3) with initial values
µ(P−1) = µ(P0) = µ(P1) = 1, and this sequence, the Padovan sequence,
grows as ρn, where ρ = 1.3247 . . . is the plastic number [17]. This implies
that the first extended formulation would use exponentially many variables,
but the treewidth-based formulation would have size O(n). In the other
extreme, the complete graph Kn on n vertices has tw(Kn) = n− 1, but Kn

has n maximal independent sets.
We conclude with an open question. Is the size O(2twn) bound optimal,

or is there an ε > 0 for which it can be improved to O((2− ε)twpoly(n))?
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