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In critical node problems, the task is to identify a small subset of so-called critical nodes whose deletion

maximally degrades a network’s “connectivity” (however that is measured). Problems of this type have been

widely studied, e.g., for limiting the spread of infectious diseases. However, existing approaches for solving

them have typically been limited to networks having fewer than 1,000 nodes. In this paper, we consider a

variant of this problem in which the task is to delete b nodes so as to minimize the number of node pairs

that remain connected by a path of length at most k. With the techniques developed in this paper, instances

with up to 17,000 nodes can be solved exactly. We introduce two integer programming formulations for

this problem (thin and path-like) and compare them with an existing recursive formulation. While the thin

formulation generally has an exponential number of constraints, it admits an efficient separation routine.

Also helpful is a new, more general preprocessing procedure that, on average, fixes three times as many

variables than before.

Key words : critical node; distance constraint; integer program; branch-and-cut; network interdiction;

dominant; partial dominant

History :

1. Introduction

Some nodes in a network are more important than others. Examples include a hub in

an airline network, a major train station in a rail network, or Paul Erdős in the math-

ematical collaboration network. The removal of a small subset of nodes like these can

dramatically disrupt the connectivity of the network. By identifying those critical nodes

whose deletion causes the most disruption, one can better understand a network and its

vulnerabilities. The associated critical node problems (CNPs) have been studied across a

variety of domains, from preventing the spread of disease and computer viruses (Cohen

et al. 2003, Tao et al. 2006, Charkhgard et al. 2018) to inhibiting enemy wireless commu-

nication by locating jamming devices (Commander et al. 2007). Other applications have

been proposed in transportation (Kutz 2004), evacuation (Matisziw and Murray 2009),

and biology (Boginski and Commander 2009). Depending on the application, the way in
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which the “connectivity” of the network is defined will differ, leading to different classes

of CNPs (Lalou et al. 2018).

A network’s connectivity is sometimes measured by the number of node pairs that are

connected via some path. In the associated CNP, the task is to delete from an undirected

graph G = (V,E) a subset of b critical nodes D ⊆ V so as to minimize the number of

node pairs that remain connected via a path in the interdicted graph G−D (which is the

subgraph of G in which the vertices D and their incident edges have been removed). This

is the most well-studied CNP variant (Arulselvan et al. 2009, Di Summa et al. 2012, Addis

et al. 2013, Veremyev et al. 2014).

However, it has been observed that the existence of a path between two nodes may be

insufficient for them to be practically “connected”; the path should also be short. This

is especially true for social networks, collaboration networks, and airline networks. This

motivates the study of distance-based critical node problems (DCNPs) (Borgatti 2006,

Veremyev et al. 2015), including the particular variant that we consider in this paper. In

it, the task is to delete a subset of b critical nodes D⊆ V so as to minimize the number of

node pairs that remain connected via a short path (i.e., length at most k) in the interdicted

graph G−D. For generality, we will consider a knapsack constraint for the deletion budget

(instead of a cardinality constraint) and edge-weighted distances (instead of hops). We will

also allow for a more general objective function that, instead of simply counting how many

pairs of nodes are close in G−D, allows for the node pairs to be weighted. The formal

problem definition will be given in Section 2.3.

To illustrate the difference between CNP and DCNP, let us consider the graph depicted

in Figure 1, which is the well-known karate club with 34 nodes and 78 edges (Zachary

1977). Each node represents a member of the club, and if two members communicate

outside of the club, then there is an edge between them in the graph. Due to a conflict

between the administrator and instructor of the club over the price of karate lessons, the

club split in two. As the figure illustrates, the CNP identifies nodes 1 and 2 as critical, and

the removal of these nodes splits the graph into one large piece and several small pieces,

leaving a total of 286 node pairs connected via some path (of any length). Meanwhile, the

DCNP identifies nodes 1 and 34 as critical, one node from each side of the split; these

nodes are in fact the administrator and the instructor. Removing the administrator and

instructor leaves 168 node pairs connected by paths of length at most two.
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(a) CNP solution
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(b) DCNP solution

Figure 1 Solutions for the Karate graph when b= 2 and k= 2.

The most notable exact approach for DCNP is an integer programming (IP) formulation

due to Veremyev et al. (2015). It uses O(k|V |2) variables and O(k|V ||E|) constraints when

distances are hop-based. Often, distances are measured in hops and k is considered as a

small constant, allowing us to write the number of variables and constraints as O(|V |2)

and O(|V ||E|), respectively. Veremyev et al. also propose to extend their model to handle

(integer) edge lengths, at the cost of a pseudopolynomial number of variables and con-

straints. Direct applications of these IP formulations are limited to instances with about

500 nodes; however, variable fixing rules (e.g., based on leaf nodes of G) can sometimes

stretch their ability to sparse 1,500-node instances. Existing exact approaches for CNP are

similarly limited.

In this paper, we propose new techniques that allow us to solve instances with up to

17,000 nodes. Key to the approach are two new IP formulations (thin and path-like), which

we compare with the formulation of Veremyev et al. To our surprise, we find that the three

formulations are equal in strength when the objective coefficients are nonnegative, but

the thin formulation is the strongest generally. Moreover, the thin formulation can handle

edge-weighted distances at no extra cost in terms of the number of variables. While the

thin formulation generally has an exponential number of constraints, it admits an efficient

separation routine which we employ in a branch-and-cut algorithm. Also helpful for our

approach is a new variable fixing procedure based on simplicial nodes that, on average,

fixes three times as many variables as the leaf rule.
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Outline. Section 2 gives notation and a brief overview of the literature, including the

formulation of Veremyev et al. (2015) which we call the recursive formulation. Section 3

introduces the new path-like and thin formulations for DCNP. We prove their correctness

(under hop-based and edge-weighted distances) and establish that the three DCNP formu-

lations are equal in strength when the objective coefficients are nonnegative. To show this,

we introduce the notion of the partial dominant of a polyhedron, which generalizes a previ-

ously studied notion called the dominant. Section 4 details our implementation, including

the separation routines for the thin formulation, a simple heuristic, and the improved vari-

able fixing procedure based on simplicial nodes. Section 5 reports on the computational

experiments and shows that the thin formulation outperforms the path-like and recursive

formulations, handling instances with up to 17,000 nodes. Finally, we conclude in Section 6.

2. Background and Related Work

This section gives the notation and terminology used throughout the paper, as well as a

brief overview of the CNP and DCNP literature.

2.1. Notation and Terminology

Consider a simple graph G= (V,E) with vertex set V and edge set E ⊆
(
V
2

)
. We typically

let n := |V | and m := |E|. Denote by NG(v) := {u∈ V | {u, v} ∈E} the neighbors of v in G;

its cardinality is the degree, denoted degG(v) := |NG(v)|. The subset of edges incident to v

is denoted by

δG(v) := {{u, v} ∈E | u∈NG(v)} .

We assume a nonnegative weight we is given for each edge e ∈E. The length of a path is

the sum of its edges’ weights. The distance from vertex u to vertex v in graph G, denoted

by distG(u, v), is the length of a shortest path from u to v. When distances are hop-based,

each edge weight we is one, and the length of a path is equal to its number of edges.

When S ⊆ V is a subset of vertices, E[S] :=E ∩
(
S
2

)
denotes the subset of edges with both

endpoints in S. The subgraph of G induced by S is denoted by G[S] := (S,E[S]). When

D ⊆ V is a subset of vertices, G−D :=G[V \D] denotes the subgraph of G obtained by

removing D and any incident edges. If H is a graph, then E(H) denotes its edge set. The

k-th power Gk = (V,Ek) of graph G= (V,E) has the same vertex set as G and edge set

Ek :=

{
{i, j} ∈

(
V

2

) ∣∣∣∣ distG(i, j)≤ k
}
.
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This definition applies for hop-based and edge-weighted distances. A vertex subset S ⊆ V
is a clique if E[S] =

(
S
2

)
. A vertex v is simplicial if its neighborhood N(v) is a clique. A

vertex is called a leaf if it has just one neighbor, in which case its neighbor is called its

stem. A shortest-path tree of graph G rooted at vertex r is a spanning tree T of G where

the length of the unique path from r to each vertex v in T equals distG(r, v).

2.2. The Critical Node Problem (CNP)

As previously mentioned, one can measure the “connectivity” of a network in many differ-

ent ways and each one will lead to a different CNP problem definition (Lalou et al. 2018,

Walteros and Pardalos 2012, Walteros et al. 2019). Practically any variant of CNP will

be NP-hard, which is typically straightforward to show. For example, a natural reduction

comes from Vertex Cover in which the task is to determine whether a graph G= (V,E)

has a subset D of b vertices such that G−D has no edges. For the variant of CNP dis-

cussed in the introduction, hardness follows by observing that G has a vertex cover of size

b if and only if CNP has a solution with objective value zero, cf. Arulselvan et al. (2009).

Consequently, if Vertex Cover is NP-hard for a particular graph class, then CNP is also

hard for that graph class. So, for example, CNP remains NP-hard for planar graphs and

for unit disk graphs (Garey and Johnson 1979).

Interestingly, however, is that, while Vertex Cover is easy in trees, Di Summa et al.

(2011) show that (a variant of) CNP is NP-hard in trees. Interested readers are encouraged

to consult Di Summa et al. (2011), Shen et al. (2013), Addis et al. (2013) for more.

Many approaches have been proposed to solve the CNP. We will focus on exact

approaches; readers can refer to Lalou et al. (2018) for discussion about heuristics and

approximation algorithms. Arulselvan et al. (2009) propose an IP formulation with Θ(n2)

variables and Θ(n3) constraints. However, they observe that the commercial MIP solver

CPLEX (version 9) sometimes took longer than 5,000 seconds to solve relatively small

instances (n ≤ 150), while their heuristic found optimal solutions in one second. Vere-

myev et al. (2014) propose formulations with Θ(n2) variables and constraints and observe

speedups over the model of Arulselvan et al. (2009). With the help of variable fixing (e.g.,

based on the idea that a leaf should not be critical), they are able to solve select instances

with up to 1,612 vertices and 2,106 edges. Di Summa et al. (2012) introduce a formulation

with Θ(n2) variables and an exponential number of path-based constraints, together with

some valid inequalities. The resulting branch-and-cut algorithm is tested on instances with
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up to 100 nodes. The base formulation of Di Summa et al. (2012) is an important precursor

to—and can be seen as a special case of—our thin formulation (by choosing k sufficiently

large).

2.3. The Distance-Based Critical Node Problem (DCNP)

Most variants of DCNP are NP-hard. Indeed, for the particular variant of DCNP that we

consider, the Vertex Cover reduction from above shows NP-hardness. That is, G has a

vertex cover of size b if and only if DCNP over G has a solution with objective value zero,

cf. Veremyev et al. (2015). However, some special cases of DCNP admit polynomial-time

algorithms (Aringhieri et al. 2019).

Veremyev et al. (2015) identify several different important classes of DCNP in which the

objectives are to:

1. minimize the number of node pairs connected by a path of length at most k;

2. minimize the Harary index;

3. minimize the sum of power functions of distances;

4. maximize the generalized Wiener index;

5. maximize the distance between two given nodes.

The recursive formulation proposed by Veremyev et al. (2015) is generic enough to handle

all of the DCNP classes mentioned above. Another noteworthy IP approach was given by

Hooshmand et al. (2020) who propose a Benders decomposition algorithm for Class 4.

In this paper, we consider a generalization of Class 1. We impose a knapsack-style budget

constraint in which each vertex i has a deletion cost ai and require that the deletion set

D⊆ V satisfy
∑

i∈D ai ≤ b. To capture the objective function, we need to know which pairs

of vertices remain “close” in the interdicted graph G−D, i.e., which node pairs {i, j} ∈
(
V
2

)
have distG−D(i, j) ≤ k with respect to the (nonnegative) edge weights we. This can be

expressed via the k-th power graph. Specifically, the “close” pairs in G−D are precisely

the edges of the k-th power graph (G−D)k, which can be written as E((G−D)k). In the

pure Class 1 problem, the objective is to minimize the cardinality of this set, |E((G−D)k)|.

However, realizing that not all node pairs e ∈
(
V
2

)
are equally important to be close, we

allow for pair-specific connection costs ce. The DCNP objective function is then given by

(DCNP objective function) obj(D) :=
∑

e∈E((G−D)k)

ce.
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Recognize that the connection costs ce (which can be negative) are defined for every pair

of nodes, while the edge weights we (which cannot be negative) are defined only for edges

of G. Our variant of DCNP can be concisely expressed as follows.

Problem: Distance-Based Critical Node Problem (DCNP).

Input: Simple graph G= (V,E), edge weights we ≥ 0 for e∈E, deletion budget b, deletion

cost ai for each vertex i ∈ V , connection cost ce for each pair of nodes e ∈
(
V
2

)
, distance

threshold k.

Output: A subset of vertices D⊆ V satisfying the budget
∑

i∈D ai ≤ b minimizing obj(D).

Under this problem definition, the formulation of Veremyev et al. can be simplified to

the following form. In it, yi is a binary variable that equals one if vertex i ∈ V is chosen

to be in the deletion set D, and usij is a binary variable that equals one if vertices i and j

are not deleted and the distance between them in G−D is at most s. To simplify future

analysis, we also introduce a binary variable xe for each edge e in the k-th power graph

Gk, indicating whether the distance between its endpoints in G−D is at most k.

min
∑
e∈Ek

cexe (1a)

∑
i∈V

aiyi ≤ b (1b)

u1
ij + yi + yj ≥ 1 ∀{i, j} ∈E (1c)

usij + yi ≤ 1 ∀i, j ∈ V, i 6= j, ∀s∈ {1,2, . . . , k} (1d)

usij = u1
ij ∀{i, j} ∈E, ∀s∈ {2,3, . . . , k} (1e)

usij ≤
∑
t∈N(i)

us−1
tj ∀{i, j} /∈E, ∀s∈ {2,3, . . . , k} (1f)

us−1
tj ≤ usij + yi ∀t∈N(i), ∀{i, j} /∈E, ∀s∈ {2,3, . . . , k} (1g)

usij = usji ∀i, j ∈ V, i 6= j, ∀s∈ {1,2, . . . , k} (1h)

ukij = xe ∀e= {i, j} ∈Ek (1i)

usij ∈ {0,1} ∀i, j ∈ V, i 6= j, ∀s∈ {1,2, . . . , k} (1j)

yi ∈ {0,1} ∀i∈ V (1k)

xe ∈ {0,1} ∀e= {i, j} ∈Ek. (1l)
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In this recursive formulation, it suffices to write the objective only over the variables whose

edges belong to the k-th power graph; other node pairs will always be far apart regardless

of the choice of D, so their x variables would equal zero and contribute nothing to the

objective. The reader is referred to Veremyev et al. (2015) for more information about this

formulation, including the interpretation of its constraints and how to extend it to handle

integer edge-weighted distances at the cost of a pseudopolynomial number of variables and

constraints.

Veremyev et al. (2015) suggested three enhancements to this formulation:

1. Since usij = usji it suffices to define just one of these variables, e.g., those with i < j.

2. The variables usij can be fixed to zero (or omitted from the model) when s < distG(i, j).

3. For a leaf vertex i, the variable yi can be fixed to zero if its stem j satisfies degG(j)≥ 2

and aj ≤ ai.

With enhancement 2, the number of variables reduces from Θ(k|V |2) to O(k|Ek|). When

k is a fixed constant, this is O(|Ek|). Next we will see that binary restrictions xe ∈ {0,1}

can be omitted and the constraints ukij = xe can be relaxed to ukij ≤ xe when the connection

costs ce are nonnegative.

2.4. Partial Dominant of a Polyhedron

Sometimes it is difficult to study the facial structure of a polyhedron P . This has motivated

some to study, not P , but a simpler polyhedron related to P . An example is the dominant

of P , denoted by P ↑ (Balas and Fischetti 1996, Schrijver 2003, Conforti et al. 2013).

Definition 1. The dominant P ↑ of polyhedron P = {x∈Rn |Ax≤ b} is the polyhedron

P ↑ := {x̂∈Rn | ∃x∈ P : x̂≥ x}= P +Rn
+,

where the inequality is a component-wise vector comparison and the symbol + denotes the

Minkowski sum.

Importantly, minimizing a linear objective over P is equivalent to minimizing over its

dominant P ↑ provided that the objective coefficients are nonnegative. That is, if c ∈ Rn
+,

then min{cTx | x∈ P}= min{cTx | x∈ P ↑}.

We will see a similar phenomenon with the recursive, path, and thin formulations. Specif-

ically, some of their constraints can safely be omitted when the connection costs ce are

nonnegative. The resulting formulations, which are smaller and more convenient to use,
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are used in our computational experiments. For this reason, when we compare the strength

of the different DCNP formulations, we do not always compare the “full” formulations.

Sometimes we compare the strength of their partial dominants. The reason for studying

their partial dominants, as opposed to their dominants, is that the objective coefficients

apply only to the x variables, and so we will take the dominant only with respect to x.

While the idea of a partial dominant is straightforward, it has not appeared in the previous

literature, to our knowledge.

Definition 2. The partial dominant P ↑x of P =
{

(x, y)∈Rn×Rd
∣∣Ax+Gy≤ b

}
with

respect to x is the polyhedron

P ↑x :=
{

(x̂, y)∈Rn×Rd
∣∣ ∃(x, y)∈ P : x̂≥ x

}
= P + (Rn

+,0
d),

where the inequality is a component-wise vector comparison, 0d is the d-dimensional vector

of zeros, and the symbol + denotes the Minkowski sum.

When dealing with MIP formulations, we will refer simply to “the partial dominant of the

formulation” instead of the technically correct, but more cumbersome, “partial dominant

of the formulation’s LP relaxation feasible region.”

Similar to before, minimizing a linear objective cTx+ 0Ty over P is equivalent to min-

imizing over its partial dominant P ↑x provided that c is nonnegative. That is, if c ∈ Rn
+,

then min
{
cTx

∣∣ (x, y)∈ P
}

= min
{
cTx

∣∣ (x, y)∈ P ↑x
}

.

The following lemma is often useful for obtaining the partial dominant. It was suggested

to us by Kelly Sullivan.

Lemma 1. Consider a polyhedron P defined as the set of (x, y)∈R×Rn that satisfy

Ay≤ b (2a)

li(y)≤ x ∀i∈ I (2b)

x≤ uj(y) ∀j ∈ J, (2c)

where each li and uj is an affine function of y. Then, the partial dominant P ↑x with respect

to the (single) x variable can be obtained by dropping the upper constraints (2c) and pairing

each lower and upper constraint. That is, P ↑x is the set of (x, y)∈R×Rn that satisfy

Ay≤ b (3a)

li(y)≤ x ∀i∈ I (3b)

li(y)≤ uj(y) ∀i∈ I, ∀j ∈ J. (3c)
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Proof. Let P̂ be the polyhedron defined by (3a), (3b), and (3c). We show that P̂ = P ↑x.

(P̂ ⊆ P ↑x) If P̂ = ∅, then the inclusion is trivial. So, suppose that (x̂, ŷ) ∈ P̂ . To show

that (x̂, ŷ) belongs to P ↑x, we seek x̌ with (x̌, ŷ)∈ P and x̂≥ x̌. To wit, define

x̌ := max{li(ŷ) | i∈ I} ,

and see that x̌≤ x̂ by assumption that x̂ satisfies constraints (3b). Now, we claim that (x̌, ŷ)

belongs to P . First, ŷ satisfies constraint (2a) by assumption that it satisfies the identical

constraint (3a). Second, (x̌, ŷ) satisfies constraints (2b) by construction of x̌. Finally, (x̌, ŷ)

satisfies each constraint (2c) by

x̌= max{li(ŷ) | i∈ I} ≤ uj(ŷ),

where the inequality holds by assumption that ŷ satisfies constraints (3c).

(P̂ ⊇ P ↑x) If P ↑x = ∅, then the inclusion is trivial. So, suppose that (x̂, ŷ) ∈ P ↑x. By

definition of partial dominant, there exists x̌ such that (x̌, ŷ) ∈ P and x̂≥ x̌. Then, since

(x̌, ŷ) belongs to P , this means that

Aŷ≤ b (4a)

li(ŷ)≤ x̌ ∀i∈ I (4b)

x̌≤ uj(ŷ) ∀j ∈ J. (4c)

We now claim that (x̂, ŷ) ∈ P̂ . First, (x̂, ŷ) satisfies constraint (3a) by inequality (4a).

Second, (x̂, ŷ) satisfies constraints (3b) by li(ŷ)≤ x̌ from (4b) and by x̌≤ x̂. Finally, (x̂, ŷ)

satisfies constraints (3c) by inequalities (4b) and (4c). �

Lemma 2. The partial dominant can be constructed sequentially. That is, if polyhedron

P is defined over variables (x, y)∈Rd×Rn and x= (x1, x2, . . . , xd), then

P ↑x = (((P ↑x1 )↑x2 ) · · · )↑xd .

See Section 1 of the Online Supplement for the proof of Lemma 2.

We first identify the partial dominant of the recursive formulation, where the LP feasible

region of the recursive formulation is denoted by R.

Lemma 3. The partial dominant R↑x of the recursive formulation can be obtained by

omitting constraints xe ≤ ukij and 0≤ xe ≤ 1 from the definition of R.
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Proof. Consider a variable xe from the definition of R. It appears only in the constraints

xe = ukij, xe ≥ 0, and xe ≤ 1. In inequality form, we have lower constraints xe ≥ ukij and

xe ≥ 0 and upper constraints xe ≤ ukij and xe ≤ 1. Since ukij is itself bounded between zero

and one, we can drop the implied bounds xe ≥ 0 and xe ≤ 1. Lemma 1 states that the

partial dominant with respect to xe is given by dropping xe ≤ ukij and pairing the lower

and upper constraints to get the constraint ukij ≤ ukij which is redundant and can also be

dropped. Repeatedly applying this procedure gives the result, as Lemma 2 guarantees. �

3. New Formulations

This section proposes two new formulations for DCNP which we call the path-like and

thin formulations. We prove that they correctly model the DCNP and that their partial

dominants are equivalent in strength to that of the recursive formulation.

3.1. The Path-Like Formulation

The path-like formulation relies on length-bounded (vertex) connectors (Salemi and

Buchanan 2020), defined below. See Schrijver (2003, pp. 203) for information about the

related and more well-studied (edge) s, t-connectors.

Definition 3 (length-k i, j-connector). A subset C ⊆ V of vertices that contains

i and j is called a length-k i, j-connector in an edge-weighted graph G = (V,E) if

distG[C](i, j)≤ k. If no proper subset of C is a length-k i, j-connector, then C is minimal.

We remark that (minimal) length-k i, j-connectors are not necessarily synonymous with

paths when distances are edge-weighted. Figure 2 gives an example.

i

1

2 j

1

3

1

1

2

Figure 2 When k= 3, C = {i,1,2, j} is a (minimal) length-k i, j-connector, but C does not induce a path graph.

The collection of all minimal length-k i, j-connectors is denoted Ck
ij, and the union of

these sets over all {i, j} pairs is denoted C := ∪Ck
ij. In the lemma below, we prove these

sets Ck
ij are disjoint, so C can be defined as a disjoint union, which will be helpful later.

Lemma 4. If edge weights we are nonnegative, then every C ∈ C is a minimal length-k

i, j-connector for a unique pair of vertices {i, j}. When some edge weights we are negative

this is not necessarily true.
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See Section 2 of the Online Supplement for the proof of Lemma 4.

The path-like formulation uses the following variables. As before, let yi be a binary

variable representing the decision to include i in the deletion set D ⊆ V , and let xe be a

binary variable representing whether the distance between the endpoints of e ∈ Ek is at

most k in G−D. Lastly, zC is a binary variable representing whether all vertices of C are

intact in G−D, i.e., whether D∩C = ∅. Here, zC is defined for all {i, j} pairs and for all

minimal length-k i, j-connectors. The path-like formulation is then as follows.

min
∑
e∈Ek

cexe (5a)

zC +
∑
v∈C

yv ≥ 1 ∀C ∈ C (5b)

zC + yv ≤ 1 ∀v ∈C, ∀C ∈ C (5c)

xe ≥ zC ∀C ∈Ck
ij, ∀e= {i, j} ∈Ek (5d)

xe ≤
∑
C∈Ck

ij

zC ∀e= {i, j} ∈Ek (5e)

∑
i∈V

aiyi ≤ b (5f)

xe ∈ {0,1} ∀e∈Ek (5g)

yi ∈ {0,1} ∀i∈ V (5h)

zC ∈ {0,1} ∀C ∈ C. (5i)

Constraints (5b) and (5c) ensure that a connector C is intact (zC = 1) if and only if

none of its vertices v ∈ C were chosen to be in the deletion set D (yv = 0 for all v ∈ C).

Constraints (5d) and (5e) ensure that the endpoints of e= {i, j} should be deemed close to

each other (xe = 1) if and only if there is an intact connector between them (
∑

C∈Ck
ij
zC ≥ 1).

Later we will see that constraints (5c) and (5e) can be omitted when the connection costs

ce are nonnegative.

Proposition 1. The path-like formulation is correct, even under edge-weighted dis-

tances.

See Section 2 of the Online Supplement for the proof of Proposition 1.

Next, we bound the size of the path-like formulation with help from the following lemma.

The proof is omitted since it is straightforward.
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Lemma 5. Suppose that distances are hop-based. A subset of vertices C is a minimal

length-k i, j-connector if and only if C induces an i, j-path graph of length at most k.

Note that the hop-based assumption in Lemma 5 is necessary, as Figure 2 shows.

Lemma 6. Suppose that distances are hop-based, k is constant, and G is connected.

Then, the number of minimal connectors |C| is

• O(m(k+1)/2) =O(nk+1) when k is odd, and

• O(nmk/2) =O(nk+1) when k is even.

See Section 2 of the Online Supplement for the proof of Lemma 6.

Remark 1. By Lemma 6, when distances are hop-based, the number of variables, con-

straints, and nonzeros in the path-like formulation isO(m(k+1)/2) when k is an odd constant,

and O(nmk/2) when k is an even constant. Meanwhile, when k is a constant, the (enhanced)

recursive formulation has O(|Ek|) variables, O(nm) constraints, and O(nm) nonzeros.

Let PATH denote the LP feasible region of the path-like formulation.

Lemma 7. The partial dominant PATH↑x of the path-like formulation can be obtained

by omitting constraints xe ≤
∑

C∈Ck
ij
zC and 0≤ xe ≤ 1 from the definition of PATH.

Proof. Consider a variable xe from the definition of PATH. It appears only in the

constraints xe ≥ 0, xe ≤ 1, xe ≤
∑

C′∈Ck
ij
zC′, and xe ≥ zC for C ∈Ck

ij. Since each zC itself is

nonnegative, we can drop the implied bound xe ≥ 0. By Lemma 1, the partial dominant

with respect to xe is obtained by dropping xe ≤
∑

C′∈Ck
ij
zC′ and xe ≤ 1, and pairing the

lower and upper constraints to get zC ≤ 1 and zC ≤
∑

C′∈Ck
ij
zC′ for C ∈ Ck

ij, which are

redundant and can be removed. Repeatedly applying this procedure for each xe variable

gives the result, as Lemma 2 guarantees. �

In the following, we use proj to denote projection. That is, if a polyhedron P is defined

over variables (x, y)∈Rd×Rn, then its projection into the x-space of variables is given by

projxP := {x | (x, y)∈ P} .

The following lemma implies that the conflict constraints (5c), while needed for PATH↑x,

are not needed for projx,y PATH↑x . Thus, they can be omitted in implementation when the

objective coefficients ce are nonnegative. Additionally, we will later use the inequalities (6)

to compare the strength of projx,y PATH↑x with that of projx,y R↑x.
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Lemma 8. If a point (x̂, ŷ, ẑ) satisfies the constraints defining PATH↑x except per-

haps (5c), then there is a similar point (x̂, ŷ, z̃), where z̃C = max
{

0,1−
∑

c∈C ŷc
}

for every

C ∈ C, that belongs to PATH↑x and that satisfies:

z̃C\{i}− ŷi ≤ z̃C ≤ z̃C\{i} ∀C ∈Ck
ij with |C| ≥ 3,∀{i, j} ∈Ek. (6)

See Section 2 of the Online Supplement for the proof of Lemma 8.

3.2. The Thin Formulation

The thin formulation relies on length-bounded separators, defined below, cf. Baier et al.

(2010) and Salemi and Buchanan (2020). Schrijver (2003, pp. 33,132) has more information

about the related (vertex) s, t-separators, and Carvajal et al. (2013), Buchanan et al.

(2015), Fischetti et al. (2017) use them for imposing connectivity in MIPs.

Definition 4 (length-k i, j-separator). A subset S ⊆ V of vertices is called a

length-k i, j-separator in an edge-weighted graph G= (V,E) if either

• S contains i or j (or both), or

• S contains neither i nor j and distG−S(i, j)>k.

If no proper subset of S is a length-k i, j-separator, then S is said to be minimal. The

collection of all minimal length-k i, j-separators is denoted by Skij.

In Figure 3, the minimal length-5 i, j separators are S5
ij = {{i},{j},{2}}. The first two

sets {i} and {j} satisfy the definition because they contain i or j, while the last set {2}

satisfies the definition because the distance distG−{2}(i, j) = 6 is greater than 5. Meanwhile,

the minimal length-6 i, j-separators are S6
ij = {{i},{j},{1,2},{2,3}}.

i

1 3

j2

1

2

3

1

1 1

2

1

Figure 3 An edge-weighted graph to illustrate length-k i, j-separators.

The thin formulation, which uses the same x and y variables as before, is as follows.

min
∑
e∈Ek

cexe (7a)

xe +
∑
v∈S

yv ≤ |S| ∀S ∈ Skij, ∀e= {i, j} ∈Ek (7b)
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xe +
∑
v∈C

yv ≥ 1 ∀C ∈Ck
ij, ∀e= {i, j} ∈Ek (7c)∑

i∈V

aiyi ≤ b (7d)

xe ∈ {0,1} ∀e∈Ek (7e)

yi ∈ {0,1} ∀i∈ V. (7f)

Constraints (7b) ensure that, for any power graph edge e= {i, j} and minimal separator

S ∈ Skij, either the endpoints of e have distance more than k in the remaining graph (xe = 0)

or at least one vertex of S is intact (
∑

v∈S yv ≤ |S| − 1). Constraints (7c) ensure that, for

any power graph edge e = {i, j} and minimal connector C ∈ Ck
ij, either the endpoints of

e have distance at most k in the remaining graph (xe = 1) or at least one vertex of C

is deleted (
∑

v∈C yv ≥ 1). Observe that the thin formulation has |Ek| + n variables and

can have exponentially many constraints (7b) and (7c). Fortunately, however, we will

see that constraints (7b) can be omitted when the connection costs ce are positive, and

constraints (7c) can be separated in polynomial time.

Proposition 2. The thin formulation is correct, even under edge-weighted distances.

See Section 2 of the Online Supplement for the proof of Proposition 2.

Let THIN denote the LP feasible region of the thin formulation.

Lemma 9. The partial dominant THIN↑x of the thin formulation can be obtained by

omitting constraints xe +
∑

v∈S yv ≤ |S| and xe ≤ 1 from the definition of THIN.

Proof. Consider a variable xe from the definition of THIN. It appears in the constraints

xe ≥ 0, xe ≤ 1, xe ≥ 1−
∑

v∈C yv for C ∈Ck
ij, and xe ≤ |S|−

∑
v∈S yv for S ∈ Skij. By Lemma 1,

the partial dominant with respect to xe is given by dropping constraints of the form xe ≤ 1

and xe ≤ |S| −
∑

v∈S yv and pairing the lower and upper constraints to get constraints of

the form 1−
∑

v∈C yv ≤ 1, 0≤ 1, 0≤ |S| −
∑

v∈S yv, and 1−
∑

v∈C yv ≤ |S| −
∑

v∈S yv. The

first three are redundant and can be dropped. To show that the last is redundant, consider

a minimal separator S ∈ Skij and a minimal connector C ∈ Ck
ij. They must intersect each

other, so we can pick a vertex u∈ S ∩C. Then, any ȳ ∈ [0,1]n has∑
s∈S

ȳs−
∑
c∈C

ȳc =
∑

s∈S\{u}

ȳs−
∑

c∈C\{u}

ȳc ≤
∑

s∈S\{u}

ȳs ≤ |S| − 1,

showing that the inequality 1 −
∑

v∈C yv ≤ |S| −
∑

v∈S yv is implied by the 0-1 bounds.

Repeatedly applying this procedure gives the result, as Lemma 2 guarantees. �
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3.3. Formulation Strength

We now compare the strength of the LP relaxations associated with the three DCNP formu-

lations: THIN, PATH, and R. First, we observe that THIN is stronger than projx,y PATH,

and that projx,y R is incomparable with THIN and with projx,y PATH. However, when the

objective coefficients are nonnegative, the appropriate objects to compare are their partial

dominants THIN↑x, projx,y PATH↑x, and projx,y R↑x which we find to have equal strength.

3.3.1. Strength of Full Formulations

Theorem 1. For every instance of DCNP, the inclusion THIN⊆ projx,y PATH holds.

Meanwhile, projx,y R is incomparable with projx,y PATH and with THIN.

Proof. This follows by Lemmata 10 and 11, which are given and proved in Section 2 of

the Online Supplement. �

3.3.2. Strength of Partial Dominants

Theorem 2. For every (hop-based) instance of DCNP,

THIN↑x = projx,y PATH↑x = projx,y R↑x .

See Section 2 of the Online Supplement for the Proof of Theorem 2.

4. Implementation Details

This section details our implementations of the recursive, path-like, and thin formulations:

• a procedure that identifies “non-critical” nodes i for which we can fix yi = 0,

• a heuristic used to provide warm start solutions,

• separation routines for the length-k i, j-connector inequalities (7c).

4.1. Variable Fixing

Recall the leaf fixing of Veremyev et al. (2015) which, informally, is that leaf vertices are

not critical.

Remark 2. Assume hop-based distances and unit connection costs ce = 1. If the stem j

of a leaf vertex i satisfies degG(j)≥ 2 and aj ≤ ai, there is an optimal solution with yi = 0.

This remark follows by a swap argument: if a feasible solution D contains vertex i, then

the objective will be no worse when leaf i is swapped with its stem j. All such variables yi

can be fixed to zero when no two leaves are adjacent.
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We generalize this remark by showing that yi can be fixed to zero when i is simplicial,

i.e., its neighborhood N(i) is a clique. A set of such variables {yi | i∈ I} can simultaneously

be fixed to zero when I is independent. Further, we observe that a maximum cardinality

independent set of simplicial vertices can be found in time O(mn).

Proposition 3. Assume hop-based distances and ce ≥ 0 for e ∈ Ek. If vertices I ⊆ V

satisfy conditions 1 and 2 below, there is an optimal deletion set D∗ ⊆ V with D∗ ∩ I = ∅.

(i) I is an independent set of simplicial vertices in G;

(ii) for every vertex i∈ I and every one of its neighbors u∈N(i):

• ai ≥ au;

• ce ≤ ce′ for every e∈ δGk(i) and e′ ∈ δGk(u).

See Section 3 of the Online Supplement for the proof of Proposition 3.

Now, to use Proposition 3, we need a procedure that finds an independent set I of

simplicial nodes. For this task, we use the algorithm below. It finds a set I of maximum

size, thus maximizing the number of yi variables that can be fixed.

FindNoncriticalNodes()

1. find S := {v ∈ V | v is simplicial in G};

2. find S′ := {v ∈ S | v satisfies condition (ii)};

3. pick one vertex vi from each of the connected components G1, G2, . . . , Gp of G[S′];

4. return I := {v1, v2, . . . , vp}.

In our computational experiments, instances have unit deletion costs av = 1 and unit

connection costs ce = 1. Under these settings S′ = S, allowing us to skip step (ii).

Proposition 4. The algorithm FindNoncriticalNodes finds a maximum independent

set of simplicial nodes (that satisfies condition (ii) of Proposition 3) in time O(nm).

See Section 3 of the Online Supplement for the proof of Proposition 4.

Let L be a maximum independent set of leaves, which can be found in linear time

O(m+n). Note that there is always a choice for L and I for which L⊆ I, so the simplicial

vertex fixing is always at least as powerful as the leaf fixing. On average, I is three times

the size of L, as reported in Table 1. For example, simplicial vertex fixing finds 2,484 and

4,846 more non-critical nodes on hep-th and cond-mat, respectively.
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I
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Figure 4 An illustration of a set of leaves L and an independent set of simplicial nodes I.

4.2. Heuristic

Our heuristic for DCNP is based on a CNP heuristic of Addis et al. (2016). Their heuristic,

called Greedy3, begins with a vertex cover D of the graph. Then, vertices are removed

from D in a greedy fashion until its size is sufficiently smaller than the deletion budget, at

which point vertices are added back to D in a greedy fashion until the budget is tight. We

make two changes. First, instead of beginning with a vertex cover, we begin with a set D

of size 2b containing the vertices of largest betweenness centrality. Second, we terminate

the heuristic as soon as the size of D reaches b. These changes are motivated in part by

the expensive DCNP objective function evaluations, which take time O(mn), as opposed

to O(m+n) for CNP. In our experience, these changes have a negligible impact on DCNP

solution quality, but a noticeable impact on running time.

Definition 5 (Betweenness Centrality, Freeman (1977)). Let σij be the num-

ber of shortest paths between vertices i and j, and let σij(v) be the number of shortest

paths between i and j that contain vertex v. The betweenness centrality of vertex v is:

CB(v) :=
∑

{i,j}∈(V \{v}
2 )

σij(v)/σij.

Brandes (2001) shows all betweenness centrality values can be computed in time O(mn)

under hop-based distances, and time O(mn+n2 logn) under edge-weighted distances.

Proposition 5. Algorithm 1 takes time O(b2mn) when distances are hop-based, and

time O(b2(mn+n2 logn)) when distances are edge-weighted.

See Section 3 of the Online Supplement for the proof of Proposition 5.

To obtain the running timeO(mn+n2 logn) for the betweenness centrality computations

and function evaluations, Fibonacci heaps should be used. However, binary heaps typically



Salemi and Buchanan: Solving the distance-based critical node problem 19

Algorithm 1 Heuristic for DCNP

1: initialize D to be the 2b vertices with largest betweenness centrality values

2: for counter = 1,2, . . . , b do

3: let v ∈ arg min{obj(D \ {u}) | u∈D}

4: D←D \ {v}

5: return D

lead to faster implementations in practice, due to smaller hidden constants. For this reason,

our implementation has a slightly slower worst-case time of O(b2(mn logn+n2 logn)).

Table 1 provides results for this heuristic on unweighted instances when k = 3 and

b ∈ {5,10}. The heuristic solutions are often very good, and are in fact optimal for 12 of

the 22 different instances where b = 5 and 5 of the instances where b = 10. Further, for

most instances, the running time is a few seconds; however, larger instances take minutes.

The largest instance cond-mat which has 16,726 vertices and 47,594 edges takes the most

time: 496 seconds when b = 5, and 1709 seconds when b = 10. We expect that larger

instances with, say, 100,000 vertices would require different techniques. However, our focus

in this paper is on exact approaches, and instances like cond-mat lie at the boundary of

tractability, so this simple heuristic suffices for our purposes.

4.3. The Separation Problem

The thin formulation generally has exponentially many constraints (7c), so it is important

to study the associated separation problem so violated inequalities can be added on-the-fly.

Problem: Separation problem for length-k i, j-connector inequalities (7c).

Input: An edge-weighted graph G= (V,E), a point (x∗, y∗)∈ [0,1]|E
k|+|V |, an integer k.

Output: (if any exist) An inequality (7c) of the type xe+
∑

v∈C yv ≥ 1 that (x∗, y∗) violates.

We cover the case where distances are hop-based, and also when they are edge-weighted.

In both cases, we consider integer separation where the given point (x∗, y∗) is assumed to be

integer, and fractional separation where no such assumption is made. Fractional separation

is important because of the well-known “separation=optimization” theorem (Grötschel

et al. 1993) which implies that the LP relaxation of thin formulation can be solved in

polynomial-time if and only if the associated separation problem can be solved in polyno-

mial time. Meanwhile, the ability to perform integer separation provides no such theoretical
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Table 1 Heuristic and preprocessing for k= 3 and b∈ {5,10}. We report the heuristic’s objective value (heur),

the time spent by the heuristic in seconds (time), the optimal objective (opt), the numbers of leaves (|L|), and

the number of simplicial vertices (|I|).

b= 5 b= 10 Preprocessing

Graph n m |E3| heur time opt heur time opt |L| |I|

karate 34 78 480 41 0.00 41 8 0.00 6 1 12

dolphins 62 159 1,107 678 0.01 662 340 0.02 335 9 9

lesmis 77 254 2,500 535 0.01 517 160 0.01 160 17 32

LindenStrasse 232 303 3,251 1,815 0.09 1,810 1,151 0.14 1,151 88 92

polbooks 105 441 3,510 2,673 0.04 2,555 1,867 0.11 1,715 0 4

adjnoun 112 425 5,634 3,719 0.06 3,719 2,501 0.15 2,501 10 12

football 115 613 6,247 5,362 0.06 5,362 4,590 0.15 4,523 0 0

netscience 1,589 2,742 13,087 8,898 0.31 8,390 7,026 0.84 6,785 205 680

jazz 198 2,742 18,461 16,185 0.22 16,136 14,306 0.75 14,216 5 14

SmallWorld 233 994 25,721 6,964 0.14 6,964 5,011 0.33 4,967 20 64

Erdos971 429 1,312 34,086 25,737 0.56 25,737 20,442 1.57 20,240 79 116

S.Cerevisae 1,458 1,948 39,091 25,190 2.84 25,190 19,861 8.57 19,861 722 770

USAir 332 2,126 46,573 29,486 0.30 29,486 19,628 0.95 19,157 55 122

power 4,941 6,594 53,125 52,456 39.36 50,410 51,782 136.21 48,602 1,226 1,414

H.pylori 706 1,392 62,028 37,626 0.93 37,626 28,204 3.06 27,807 263 268

Harvard500 500 2,043 83,993 19,241 0.41 16,448 9,951 1.12 8,581 79 134

homer 542 1,619 91,527 45,828 0.56 45,828 24,882 1.39 24,882 198 289

celegansm 453 2,025 91,531 44,967 0.63 44,967 26,830 2.10 25,556 6 95

email 1,133 5,451 289,259 263,409 3.36 263,409 241,144 11.74 241,128 151 197

hep-th 8,361 15,751 376,431 345,320 77.05 345,320 323,268 268.53 321,486 1,481 3,965

PGPgiant 10,680 24,316 1,145,492 860,319 240.60 857,035 769,350 795.27 744,908 4,229 5,299

cond-mat 16,726 47,594 1,761,969 1,637,445 496.13 1,633,299 1,561,855 1709.02 1,541,815 1,849 6,695

guarantees, but still can be practically useful in a branch-and-cut algorithm (Buchanan

et al. 2015, Fischetti et al. 2017, Validi and Buchanan 2020, Salemi and Buchanan 2020).

Table 2 summarizes the results.

Table 2 The complexity of the separation problems, under hop-based and edge-weighted distances.

integer separation fractional separation

hop-based O(nm) O(knm)

edge-weighted O(nm+n2 logn) (weakly) NP-hard

4.3.1. Integer Separation Algorithm 2 solves the separation problem when given an

integer point (x∗, y∗) ∈ {0,1}|Ek|+|V |. It applies to both the hop-based and edge-weighted
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cases, with the only difference being the routine used for generating the shortest-path

trees: time O(m+n) versus time O(m+n logn) in line 3. Algorithm 2 identifies a violated

inequality of type (7c) by seeking a power graph edge e= {i, j} with x∗e = 0 (line 5) and a

length-k i, j-connector in G−D∗ (line 6) whose vertices V (P ) are intact,
∑

v∈V (P ) y
∗
v = 0.

Algorithm 2 IntegerSeparation(G,w,x∗, y∗, k)

1: D∗←{v ∈ V | y∗v = 1}

2: for i∈ V \D∗ do

3: find a shortest-path tree of G−D∗ rooted at i with respect to w

4: for each power graph edge e= {i, j} ∈Ek that is incident to i do

5: if distG−D∗(i, j)≤ k and x∗e = 0 then

6: from the shortest-path tree, find a shortest path P from i to j in G−D∗

7: add xe +
∑

v∈V (P ) yv ≥ 1

8: break . optional, but needed for time bound

Remark 3. Algorithm 2 runs in time O(nm) when distances are hop-based and in time

O(nm+n2 logn) when distances are edge-weighted.

The reason for adding the break in line 8 is to ensure that the algorithm does not spend

too much time generating the paths and associated inequalities. If the break is omitted, the

algorithm may add up to |Ek| violated inequalities, and each will be written with respect

to a path P . When distances are hop-based, each P will touch at most k+ 1 vertices, and

so the time to write the inequalities is O(k|Ek|), which might be larger than the bound

O(nm), giving a total time that could be written O(knm). Meanwhile, when distances are

edge-weighted, the paths P may cross Ω(n) vertices, perhaps requiring time O(n3).

However, our implementation omits the break (line 8). We find the extra time spent in

the separation procedure is justified. The intuition is as follows. Suppose the point (x∗, y∗)

has x∗e = 0 even though its endpoints are close to each other in G−D∗. Then it is likely that

if no inequality that acts on xe is added, the inequality for xe will continue to be violated

in the next separation call, eventually leading to a larger number of branch-and-bound

nodes. Moreover, many of our experiments consider the hop-based case where k is a small

constant, in which case O(knm) =O(nm), and the additional time is negligible.
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4.3.2. Fractional Separation When distances are hop-based, fractional separation

takes time O(knm) by dynamic programming (Algorithm 3). With slight modifications, it

can be applied to the edge-weighted case assuming that the edge weights are integer-valued.

This would give a pseudo-polynomial running time. Meanwhile, fractional separation under

edge-weighted distances is generally NP-hard, as shown in Theorem 3.

Algorithm 3 identifies a violated inequality of type (7c) by seeking a power graph e=

{i, j} and a k-hop path P for which x∗e plus the path’s “cost” (
∑

v∈V (P ) y
∗
v) is sufficiently

less than one. For simplicity, it is given for a fixed vertex i. To solve the “full” separation

problem, it should be applied for each vertex i ∈ V . In the pseudocode, d(v, s) stores, at

termination, the cost of a cheapest at-most-s-hop path P from i to v (with respect to

vertex weights y∗v). We follow the convention that d(v, s) = +∞ when no such path exists.

The paths are stored in p by predecessors. Specifically, p(v, s) stores, at termination, the

predecessor of vertex v in the cheapest path with at most s hops from i to v.

Algorithm 3 FractionalSeparationHopBased(G,x∗, y∗, k, i)

1: for s= 0,1, . . . , k do . initialization

2: d(i, s)← y∗i

3: for v ∈ V \ {i} do

4: d(v, s)←+∞

5: for s∈ {1,2, . . . , k} do . dynamic programming

6: for v ∈NGk(i) do

7: for u∈NG(v) do

8: if d(v, s)>d(u, s− 1) + y∗v then

9: d(v, s)← d(u, s− 1) + y∗v

10: p(v, s)← u

11: for each power graph edge e= {i, j} ∈Ek that is incident to i do . add cuts

12: if violation := 1−x∗e − d(j, k)> 0 then

13: let P be the cheapest path from i to j of length at most k that is stored in p

14: add xe +
∑

v∈V (P ) yv ≥ 1.
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Lines 5-10 are the most costly steps, taking time O(km). Thus, by running the algorithm

n times (once for each vertex i∈ V ), these lines take a total of O(knm). Meanwhile, lines

11-14 take a combined time of O(k|Ek|) over the n different calls, which is O(knm).

Remark 4. Under hop-based distances, fractional separation of inequalities (7c) takes

time O(knm).

To enable Algorithm 3 to handle integer-weighted edges, one should adjust the updates

in lines 8-10. However, the resulting algorithm would be too slow for the instances coming

from our experiments, so we do not bother with this pseudo-polynomial time extension.

Theorem 3. Under edge-weighted distances, fractional separation for THIN↑x is NP-

hard.

Proof. We prove it is NP-hard to determine whether a given point (x∗, y∗) violates an

inequality defining THIN↑x . The reduction is from Partition in which positive integers

p1, p2, . . . , pn and a target value ρ :=
∑n

v=1 pv/2 are given. Construct the edge-weighted

graph G = (V,E) shown in Figure 5. The edge weights {we}e∈E, and values {y∗v}v∈V are

given in the figure. Next, let k = ρ/(ρ+ 1), b = n, and av = 1 for all v ∈ V . Finally, let

x∗{i,j} = 0 for the end vertices i and j, and x∗e = 1 for all other pairs e∈Ek \ {{i, j}}.
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Figure 5 The graph used in the NP-hardness reduction for Theorem 3.

Observe (x∗, y∗) satisfies the budget (7d), the 0-1 bounds on x and y, and all connector

constraints (7c) except perhaps for power graph edge {i, j}. We show the Partition

instance has a solution if and only if (x∗, y∗) violates one of the inequalities defining THIN↑x.

( =⇒ ) Suppose that the Partition instance admits a solution T ⊂ [n] with
∑

v∈T pv = ρ.

Its complement T̄ = [n] \ T also has weight ρ. Let B = {v′ | v ∈ T̄} be the vertices v′ from

the bottom row of the graph in Figure 5 whose top row counterpart v does not belong to

T . We observe that

C = {i, j}∪T ∪B ∪{h2, h3, . . . , hn}
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is a (minimal) length-k i, j-connector and the associated inequality is violated, x∗{i,j} +∑
v∈C y

∗
v < 1. To wit, let Ê(G[C]) be the edges of E (G[C]) of positive weight and see

distG[C](i, j) =
∑

e∈E(G[C])

we =
∑

e∈Ê(G[C])

we =

∑
v∈T pv

ρ+ 1
=

ρ

ρ+ 1
= k

x∗{i,j}+
∑
v∈C

y∗v = x∗{i,j}+
∑
v∈B

y∗v = 0 +

∑
v∈T̄ pv

ρ+ 1
=

ρ

ρ+ 1
< 1.

(⇐= ) Suppose (x∗, y∗) violates at least one inequality defining THIN↑x. By the dis-

cussion above, this inequality must be a connector inequality, say, for a minimal length-k

i, j-connector C, in which case x∗{i,j}+
∑

v∈C y
∗
v < 1. Since C is a minimal i, j-connector,

∑
v∈C

y∗v +
∑

e∈E(G[C])

we =
2ρ

ρ+ 1
.

Moreover,
∑

v∈C y
∗
v =

∑
e∈E(G[C])we = ρ

ρ+1
because

ρ

ρ+ 1
= k≥

∑
e∈E(G[C])

we =
2ρ

ρ+ 1
−
∑
v∈C

y∗v ≥
ρ

ρ+ 1
,

where the first inequality holds since C is a (minimal) length-k i, j-connector in the Figure 5

graph, and the last inequality holds because otherwise x∗{i,j}+
∑

v∈C y
∗
v ≥ 0+ ρ+1

ρ+1
= 1. Let T

be the subset of C that belongs to the top row of vertices {1,2, . . . , n}, and let T̄ = [n]\T .

Further, let B be the subset of C that belongs to the bottom row {1′,2′, . . . , n′}. Then, T̄

is a solution to Partition, as∑
v∈T̄ pv

ρ+ 1
=
∑
v∈B

y∗v =
∑
v∈C

y∗v =
ρ

ρ+ 1
. �

5. Computational Experiments

In this section, we provide results of experiments with different implementations of the

partial dominant of DCNP formulations:

• R, direct implementation of recursive formulation by Veremyev et al. (2015);

• PATH, direct implementation of path-like formulation;

• THIN, direct implementation of thin formulation;

• THINF, branch-and-cut implementation of thin formulation via fractional separation;

• THINI, branch-and-cut implementation of thin formulation via integer separation.
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Each implementation uses the heuristic and variable fixing procedure given in Section 4,

and all experiments were conducted on a Dell Precision Tower 7000 Series (7810) machine

running Windows 10 enterprise, x64, with Intel® Xeon® Processor E52630 v4 (10 cores,

2.2GHz, 3.1GHz Turbo, 2133MHz, 25MB, 85W) – that is 20 logical processors – and 32

GB memory. The code was written in Microsoft Visual Studio 2015 in C++ for Gurobi

version 7.5.1. The code and all instances are available at (Salemi and Buchanan 2021). The

branch-and-cut implementations invoke the parameter LazyConstraints; the MIP time

limit is 3600 seconds; and the method parameter is set to concurrent.

5.1. Results for Hop-Based Distances

First, we report experimental results on DCNP instances in which distances are hop-

based. We consider all of real-life graphs considered by Veremyev et al. (2015), as well as

some other (often larger) instances. These graphs come from the Pajek dataset (Batagelj

and Mrvar 2006), the University of Florida Sparse Matrix Collection database (Davis

and Hu 2011), and the 10th DIMACS Implementation Challenge (DIMACS-10 2017).

Veremyev et al. (2015) ran experiments for k= 3, b∈ {1,2, . . . ,10}, and av = 1 for all v ∈ V .

Given that the performance may be sensitive to k, we consider k ∈ {3,4,5}. Using small

values like these ensures that paths are counted only when they are short, which is what

distinguishes DCNP from CNP. Also, as DCNP can be brute-forced for small b, we consider

b∈ {5,10,15}.
Tables 3 and 4 report the total time in seconds (including preprocessing, heuristic, and

model build time), or the best lower and upper bounds [LB,UB] within a 3600 second time

limit. An entry of LPNS denotes that the LP relaxation was not solved within the time

limit (due to build time or solve time), while MEM denotes a memory crash.

The thin implementations perform the best and are often faster than R by an order

of magnitude. Implementation THIN solves all instances that R and PATH can solve,

plus 9 and 4 others, respectively. Some of the larger instances like hep-th, PGPgiant, and

cond-mat cause R to crash, while the other implementations do not. Surprisingly, however,

we find that the thin implementations fail to solve the 198-node instance jazz when b= 10.

Examination of the logs reveals that Gurobi is spending an inordinate amount of time to

solve the LP relaxations at its branch-and-bound nodes. We suspect this behavior results

from the dual simplex method encountering degeneracy. To remedy the issue, we forced

Gurobi to solve the LP relaxations at every branch-and-bound node using the barrier
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method. This enabled Gurobi to solve this instance in 3182.93 seconds. Another observation

from Tables 3 and 4 is that THIN typically outperforms THINI and THINF when k = 3.

Indeed, THIN is quicker than THINI and THINF on 37 of these 44 instances. Tweaks

to the branch-and-cut implementations (e.g., varying the cut violation threshold, varying

the initial constraints, limits to the number of cuts per callback) did not change this.

The number of branch-and-bound nodes is typically small, often less than 100 (for all

implementations). For the THINI and THINF implementations, the number of lazy cuts

is also small, even when compared to the number of xe variables, |Ek|. These detailed

numbers can be found on GitHub.

Table 3 Running times, or the best [lower bound, upper bound] at termination, when (k, b) = (3,5). LPNS

indicates that the LP relaxation was not solved within one hour, and MEM denotes a memory crash.

Graph n m |Ek| obj R PATH THINI THINF THIN

karate 34 78 480 41 0.16 0.09 0.11 0.07 0.06

dolphins 62 159 1,107 662 5.35 3.18 0.72 0.78 0.76

lesmis 77 254 2,500 517 0.64 0.45 0.26 0.22 0.19

LindenStrasse 232 303 3,251 1,810 0.78 0.45 0.38 0.36 0.30

polbooks 105 441 3,510 2,555 15.86 8.41 3.79 3.21 2.61

adjnoun 112 425 5,634 3,719 2.83 3.04 1.65 1.34 1.05

football 115 613 6,247 5,362 257.38 276.13 141.52 98.08 87.39

netscience 1,589 2,742 13,087 8,390 19.07 2.00 2.72 2.60 1.29

jazz 198 2,742 18,461 16,136 [15732,16185] [16074,16136] 1851.30 1915.34 1079.89

SmallWorld 233 994 25,721 6,964 23.68 9.56 7.95 8.10 5.96

Erdos971 429 1,312 34,086 25,737 21.35 14.96 22.28 16.14 10.55

S.Cerevisae 1,458 1,948 39,091 25,190 25.86 10.31 9.89 9.62 5.76

USAir 332 2,126 46,573 29,486 55.61 52.58 40.96 40.78 27.54

power 4,941 6,594 53,125 50,410 195.05 64.19 59.43 77.79 46.39

H.Pylori 706 1,392 62,028 37,626 100.81 17.18 24.25 19.81 9.09

Harvard500 500 2,043 83,993 16,448 67.30 26.33 18.99 19.09 16.09

homer 542 1,619 91,527 45,828 412.57 369.77 62.75 67.02 34.26

celegansm 453 2,025 91,531 44,967 187.10 55.10 41.06 40.96 42.00

email 1,133 5,451 289,259 263,409 1543.05 202.01 187.57 192.16 118.61

hep-th 8,361 15,751 376,431 345,320 MEM 378.45 255.79 261.45 172.41

PGPgiant 10,680 24,316 1,145,492 857,035 MEM 2018.44 686.43 722.59 702.71

cond-mat 16,726 47,594 1,761,969 1,633,299 MEM LPNS 3705.23 3701.27 2393.82

The results given in Tables 5 and 6 lead to similar conclusions for k= 4 and b∈ {5,10}.
That is, the thin implementations perform the best, with THIN solving all of the instances

that R and PATH can solve, plus 6 and 5 others, respectively. However, the instances

appear to be more challenging when k= 4 as opposed to k= 3. In fact, the largest instances

PGPgiant and cond-mat cause R, PATH, and THIN to crash. This is explained by the
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Table 4 Running times, or the best [lower bound, upper bound] at termination, when (k, b) = (3,10). LPNS

indicates that the LP relaxation was not solved within one hour, and MEM denotes a memory crash.

Graph n m |Ek| obj(D) R PATH THINI THINF THIN

karate 34 78 480 6 0.19 0.13 0.14 0.15 0.08

dolphins 62 159 1,107 335 5.42 2.44 1.67 1.39 1.13

lesmis 77 254 2,500 160 0.61 0.41 0.37 0.31 0.20

LindenStrasse 232 303 3,251 1,151 0.84 0.47 0.47 0.47 0.34

polbooks 105 441 3,510 1,715 22.18 11.27 7.65 6.17 3.67

adjnoun 112 425 5,634 2,501 3.09 3.46 2.81 2.86 1.18

football 115 613 6,247 4,523 2164.34 985.71 602.82 633.83 271.57

netscience 1,589 2,742 13,087 6,785 20.24 2.85 2.87 2.70 1.91

jazz 198 2,742 18,461 14,216 [13074,14306] [13020,14306] [13620,14306] [13500,14306] [13579,14306]

SmallWorld 233 994 25,721 4,967 1266.10 89.64 64.27 57.24 21.62

Erdos971 429 1,312 34,086 20,240 733.33 197.72 75.52 76.32 55.62

S.Cerevisae 1,458 1,948 39,091 19,861 33.20 19.71 18.11 17.73 11.82

USAir 332 2,126 46,573 19,157 2325.24 1082.62 318.61 324.05 293.01

power 4,941 6,594 53,125 48,602 294.30 175.40 155.89 150.63 143.68

H.Pylori 706 1,392 62,028 27,807 92.74 22.09 24.94 24.62 11.86

Harvard500 500 2,043 83,993 8,581 57.33 30.72 14.78 14.65 18.20

homer 542 1,619 91,527 24,882 45.09 34.63 36.68 33.90 21.64

celegansm 453 2,025 91,531 25,556 [25183,25556] 2320.80 111.42 120.49 134.34

email 1,133 5,451 289,259 241,128 [241060,241144] 1571.03 344.73 492.86 203.43

hep-th 8,361 15,751 376,431 321,486 MEM 576.06 468.22 456.14 368.17

PGPgiant 10,680 24,316 1,145,492 744,908 MEM [744769,748537] 1572.26 1846.43 1597.51

cond-mat 16,726 47,594 1,761,969 1,541,815 MEM LPNS 4785.19 4877.03 3402.80

large numbers of variables and constraints. For PGPgiant, there are more than 4 million

variables and 25 million constraints. Meanwhile, cond-mat requires more than 7 million

variables and 27 million constraints.

In Section 4 of the Online Supplement, we provide results of solving instances for (k, b) =

(3,15) and (k, b) = (4,15) with implementations R and THIN. In addition, we report the

results of implementations R and THINI when k= 5 and b∈ {3,4,5}. Extensive computa-

tional results for all values of k ∈ {3,4,5} and b∈ {5,10,15} and different implementations

of DCNP formulations, including “full” versions of the recursive and path-like formulations

are available in the Results directory of the GitHub repository (Salemi and Buchanan

2021).

In Section 5 of the Online Supplement, we compare the performance of the R and THIN

models under (i) no fixing, (ii) leaf fixing, and (iii) simplicial fixing to better understand

the effects of fixing.
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Table 5 Running times, or the best [lower bound, upper bound] at termination, when (k, b) = (4,5). LPNS

indicates that the LP relaxation was not solved within one hour, and MEM denotes a memory crash. A question

mark “?” indicates that the optimal objective value for an instance is not known.

Graph n m |Ek| obj(D) R PATH THINI THINF THIN

karate 34 78 553 44 0.34 0.19 0.06 0.05 0.10

dolphins 62 159 1,459 764 17.19 47.90 1.37 0.94 1.39

lesmis 77 254 2,899 583 2.56 4.33 0.80 0.82 0.96

LindenStrasse 232 303 7,257 3,526 4.60 2.23 2.29 2.18 1.42

polbooks 105 441 4,685 3,333 66.01 158.82 12.73 15.26 25.12

adjnoun 112 425 6,178 4,777 322.88 1559.11 47.18 75.12 263.58

football 115 613 6,555 ? [5667,5987] [5657,5994] [5763,5984] [5759,5986] [5648,5987]

netscience 1,589 2,742 22,847 11,786 42.11 5.69 5.14 5.99 3.43

jazz 198 2,742 19,336 17,350 [16626,17799] LPNS [16802,17799] [16852,17799] [16597,17799]

SmallWorld 233 994 27,028 9,606 72.86 49.30 25.71 21.00 23.60

Erdos971 429 1,312 62,059 49,325 468.71 136.45 623.46 415.54 70.97

S.Cerevisae 1,458 1,948 117,958 66,402 64.58 51.37 54.38 54.80 28.20

USAir 332 2,126 53,447 33,795 [33390,33906] [33390,33906] 788.40 684.15 359.37

power 4941 6,594 105,233 97,949 318.20 139.74 80.21 80.94 86.89

H.Pylori 706 1,392 162,758 109,368 400.49 115.16 578.75 583.24 80.86

Harvard500 500 2,043 119,080 37,491 863.34 231.74 327.04 308.96 193.00

homer 542 1,619 133,947 76,068 976.82 251.41 1068.27 938.58 132.43

celegansm 453 2,025 100,476 71,463 [70233,71463] [70233,71463] [66186,71463] [70184,71463] 2617.86

email 1,133 5,451 548,801 ? LPNS LPNS [258207,522824] [258207,522824] LPNS

hep-th 8,361 15,751 1,340,125 1,216,604 MEM 2885.81 [329778,1216604] [329778,1216604] 1935.73

PGPgiant 10,680 24,316 4,211,853 ? MEM MEM [833432,3122094] [833432,3122094] MEM

cond-mat 16,726 47,594 7,586,150 ? MEM MEM [1586132,6976109] [1586132,6976109] MEM

5.2. Results for Edge-Weighted Distances

Now, we turn to DCNP instances in which distances are edge-weighted. Test instances

(including edge weights we) were collected from the Transportation Networks Reposi-

tory (Stabler et al. 2019) and the Hazmat Network Data of STOM-Group (2019). As

before, we take av = 1 for all v ∈ V , and b∈ {5,10}. The distance threshold k is chosen so

that the number of vertex pairs {i, j} with distG(i, j)≤ k is approximately α
(
n
2

)
. Tables 7

and 8 provide results when α∈ {0.05,0.10}. We only provide results for the THINI imple-

mentation, as the other implementations would require an exponential number of initial

constraints or have an NP-hard separation problem (Theorem 3). The tables also report

the heuristic’s objective (heur) and the time spent by the heuristic (htime).

We see that the THINI implementation is able to solve edge-weighted instances with up

to 1,000 nodes. Instances with fewer than 500 nodes are solved in a few seconds. Meanwhile,

instances with more than 1,000 nodes pose quite a challenge, certainly due in part to the

large number of power graph edges |Ek| and associated variables {xe}e∈Ek .
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Table 6 Running times, or the best [lower bound, upper bound] at termination, when (k, b) = (4,10). LPNS

indicates that the LP relaxation was not solved within one hour, and MEM denotes a memory crash. A question

mark “?” indicates that the optimal objective value for the instance is not known.

Graph n m |Ek| obj(D) R PATH THINI THINF THIN

karate 34 78 553 6 0.33 0.22 0.25 0.07 0.12

dolphins 62 159 1,459 428 38.61 46.83 5.46 3.38 6.44

lesmis 77 254 2,899 178 3.30 4.65 0.67 0.50 1.26

LindenStrasse 232 303 7,257 1,913 2.76 2.17 2.06 1.90 1.38

polbooks 105 441 4,685 2,118 164.64 674.46 24.95 29.30 87.65

adjnoun 112 425 6,178 3,694 1259.60 [3364,3708] 214.90 250.94 1137.01

football 115 613 6,555 ? [4707,5356] [4664,5423] [4807,5423] [4774,5408] [4708,5419]

netscience 1,589 2,742 22,847 8,778 88.36 12.47 6.94 13.54 6.59

jazz 198 2,742 19,336 15,259 [13894,16036] LPNS [14234,15615] [14352,16036] [13888,16036]

SmallWorld 233 994 27,028 6,046 [6014,6048] [6024,6057] 93.41 110.91 234.22

Erdos971 429 1,312 62,059 41,097 [40360,41375] [40251,41375] 3539.78 3233.67 [40545,41097]

S.Cerevisae 1,458 1,948 117,958 47,324 72.44 56.65 49.26 49.46 40.26

USAir 332 2,126 53,447 24,935 [22916,27343] [22832,27343] [24762,24935] [24498,24958] [23569,25281]

power 4,941 6,594 105,233 92,522 573.16 289.76 196.07 250.69 199.54

H.Pylori 706 1,392 162,758 82,441 555.33 169.56 1724.67 1648.07 108.47

Harvard500 500 2,043 119,080 16,708 521.37 328.87 163.32 176.06 122.37

homer 542 1,619 133,947 46,396 967.32 264.70 3313.51 2486.69 167.61

celegansm 453 2,025 100,476 48,046 [47866,52157] [47866,52157] [38641,52157] [47861,48046] 863.15

email 1,133 5,451 548,801 ? LPNS MEM [236046,498364] [236046,498364] LPNS

hep-th 8,361 15,751 1,340,125 1,123,002 MEM 3086.37 [306113,1125603] [306113,1125603] 1810.36

PGPgiant 10,680 24,316 4,211,853 ? MEM MEM [721537,2673960] [721537,2673960] MEM

cond-mat 16,726 47,594 7,586,150 ? MEM MEM [1495035,6571705] [1495035,6571705] MEM

Table 7 Running times, or the best [lower bound, upper bound] for edge-weighted networks when α= 0.05 and

b∈ {5,10} using implementation THINI. We also report the heuristic’s objective (heur) and heuristic time

(htime). A question mark “?” indicates that the optimal objective value for the instance is not known.

b= 5 b= 10

Graph n m k |Ek| heur opt htime (total) time heur opt htime (total) time

Albany 90 149 44 204 139 136 0.07 0.12 94 91 0.21 0.35

Buffalo 90 149 260 205 127 127 0.08 0.12 94 89 0.17 0.21

DC-NY-BOS 317 509 5,286 2,505 1967 1910 0.90 2.91 1636 1510 2.70 5.05

Korean 324 440 50 2,619 2227 2038 0.74 1.11 1918 1724 2.51 3.06

Anaheim 416 634 7,709 4,348 3587 3540 1.36 2.32 3055 3012 5.18 6.73

Barcelona 930 1,798 127 21,778 20640 20259 8.15 149.38 19674 18977 29.63 3576.68

Rome 3,353 4,831 2,888 281,058 259481 ? 112.26 [253268,259481] 251184 ? 392.30 [222668,251184]

Austin 7,388 10,591 464 1,368,735 1352766 ? 602.50 [30408,1352766] 1336801 ? 2271.42 [30275,1336801]

Chicago 12,979 20,627 889 4,213,117 4190256 ? 1977.27 [65083,4190256] 4168480 ? 7664.38 [64922,4168480]

5.3. Critical Nodes of the Buffalo, NY Highway Network

To illustrate the differences between CNP and DCNP on edge-weighted instances, consider

the Buffalo network. The edges of this network represent segments of the major highways
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Table 8 Running times, or the best [lower bound, upper bound] for edge-weighted networks when α= 0.10 and

b∈ {5,10} using implementation THINI. We also report the heuristic’s objective (heur) and heuristic time

(htime). A question mark “?” indicates that the optimal objective value for the instance is not known.

b= 5 b= 10

Graph n m k |Ek| heur opt htime (total) time heur opt htime (total) time

Albany 90 149 65 403 256 247 0.08 0.22 158 157 0.17 0.35

Buffalo 90 149 410 402 272 269 0.08 0.22 195 179 0.21 0.34

DC-NY-BOS 317 509 8,641 5,010 4224 3848 0.91 4.59 3394 3154 3.31 11.54

Korean 324 440 78 5,308 4521 4025 0.80 1.75 3669 3154 2.72 4.37

Anaheim 416 634 11,036 8,637 7161 7009 1.50 4.20 6251 5977 5.22 9.48

Barcelona 930 1,798 185 43,449 41644 40126 8.16 [38374,41104] 39344 ? 31.77 [33164,38674]

Rome 3,353 4,831 4,189 561,987 524792 ? 108.96 [462892,524792] 506983 ? 397.36 [13502,506983]

Austin 7,388 10,591 716 2,729,813 2698516 ? 604.51 [30793,2698516] 2678413 ? 2270.52 [30660,2678413]

Chicago 12,979 20,627 1,325 8,428,119 8386922 ? 2104.38 [65187,8386922] 8350868 ? 8232.85 [65026,8350868]

near Buffalo, New York and are weighted based on their length. Roughly 5% of node pairs

are within 2.6 miles of each other, and 10% of node pairs are within 4.1 miles of each other1.

Figures 6, 7, and 8 provide optimal solutions for DCNP (α = 0.05), DCNP (α = 0.10),

and CNP, respectively, when b∈ {5,10}. As expected, the CNP solutions split the network

into multiple pieces. For example, both CNP solutions split Grand Island (the wheel-like

subgraph near the upper-left whose nodes are shown by squares in Figure 8) off from the

mainland along I-190, but the DCNP solutions do not. Meanwhile, the DCNP solutions

tend to favor “hubs” that have many neighbors and other nearby nodes. For example, when

b= 5, both DCNP solutions select a node from downtown Buffalo (just below the center

of the graph), while the CNP solution does not. Another observation is that the DCNP

solutions appear more stable as the budget increases. Specifically, as the budget doubles

from b= 5 to b= 10, four of the five initial DCNP nodes remain selected. For CNP, the

solutions change more, with only two of the five initial nodes remaining selected.

6. Conclusion and Future Work

In this paper, we propose new path-like and thin integer programming formulations for

the distance-based critical node problem. Under hop-based distances (and nonnegative

connection costs), these new formulations are equivalent in strength to the previously

existing recursive formulation of Veremyev et al. (2015). To prove this equivalence, we

introduce the notion of the partial dominant of a polyhedron. The newly proposed thin

1 The edge weights are originally provided rounded to the nearest hundredth mile; we multiply them by 100 so that
each weight we is an integer, so k= 410 represents 4.1 miles.
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1

Figure 6 DCNP solutions for Buffalo network when α= 0.05 and the budget is b∈ {5,10}.

1

Figure 7 DCNP solutions for Buffalo network when α= 0.10 and the budget is b∈ {5,10}.

formulation is the fastest formulation on real-life graphs, often taking a tenth of the time

of the recursive formulation, and solving larger instances than were solvable before. A

branch-and-cut implementation of the thin formulation is also able to handle instances in

which distances are edge-weighted. This enables us to solve road network instances of the
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Figure 1: CNP solutions for Buffalo network when b ∈ {5, 10}.

1

Figure 8 CNP solutions for Buffalo network when the budget is b∈ {5,10}.

distance-based critical node problem; such instances could not have been handled with

previous formulations.

We mention a few opportunities for future work. One direction is to further speed up

the computations to handle larger instances, perhaps through decomposition methods or

through combinatorial bounds (instead of LP bounds). Another direction would be to

extend the techniques to other problem variants considered by Veremyev et al. (2015).

A last direction is to swap the objective and the constraints, i.e., to delete a minimum

number of vertices |D| such that the number of close pairs |E((G−D)k)| is bounded by a

user-specified threshold t.

At a late stage of the review process, we became aware of a subsequent work on the

distance-based critical node problem that uses some of our ideas (Alozie et al. 2021).
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1. Proofs from Section 2

Proof of Lemma 2. The proof is by induction on d. The base case, where d = 1, is

trivial. For the inductive step, suppose the statement is true for d= k; we show it holds

for k+ 1.

(⊆) If P ↑x = ∅, then the inclusion is trivial. So, suppose that (x, y) ∈ P ↑x. By definition

of P ↑x, there exists a point (x, y) ∈ P where xi ≥ xi for every i ∈ [k + 1]. Observe that

(x1, x2, . . . , xk, xk+1, y) belongs to the partial dominant of P with respect to (x1, x2, . . . , xk):

P ↑(x1,x2,...,xk) :=
{

(x̂1, x̂2, . . . , x̂k, xk+1, y)∈Rk+1×Rn
∣∣ ∃(x, y)∈ P : x̂i ≥ xi ∀i∈ [k]

}
,

because (x, y)∈ P and xi ≥ xi for all i∈ [k]. By the induction assumption,

P ↑(x1,x2,...,xk) = (((P ↑x1 )↑x2 ) · · · )↑xk .

Then, (x, y) belongs to the next partial dominant (((P ↑x1 )↑x2 ) · · · )↑xk+1 which equals

{
(x1, x2, . . . , xk, x̂k+1, y)∈Rk+1×Rn

∣∣ ∃(x, y)∈ (((P ↑x1 )↑x2 ) · · · )↑xk : x̂k+1 ≥ xk+1

}
,

because (x1, x2, . . . , xk, xk+1, y)∈ (((P ↑x1 )↑x2 ) · · · )↑xk and xk+1 ≥ xk+1.

(⊇) If (((P ↑x1 )↑x2 ) · · · )↑xk+1 = ∅, then the inclusion is trivial. So, suppose that (x, y) ∈

(((P ↑x1 )↑x2 ) · · · )↑xk+1 . By the induction assumption, (x, y) belongs to the equivalent poly-

hedron (P ↑(x1,x2,...,xk))↑xk+1 , where P ↑(x1,x2,...,xk) is the partial dominant with respect to

36
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(x1, x2, . . . , xk). By definition of the partial dominant (P ↑(x1,x2,...,xk))↑xk+1 , there is a point

(x1, x2, . . . , xk, xk+1, y)∈ P ↑(x1,x2,...,xk) with xk+1 ≥ xk+1. By the definition of P ↑(x1,x2,...,xk) , this

in turn implies another point (x, y) from P with xi ≥ xi for all i∈ [k]. We have thus shown

that (x, y) is a point from P that “lies below” (x, y) in the x-space, i.e., xi ≥ xi for all

i∈ [k+ 1], and thus (x, y) belongs to P ↑x. �

2. Proofs from Section 3

Proof of Lemma 4. Let i, j ∈ V be distinct vertices and let C ∈Ck
ij be a minimal length-

k i, j-connector. Suppose that C is also a minimal length-k u, v-connector. We are to show

{i, j}= {u, v}.

In the first case, suppose that the sets {i, j} and {u, v} have at least one vertex in

common. Without loss of generality, suppose that i= u. We are to show that j = v. Since

C is minimal, G[C] is connected. Consider a shortest-path tree of G[C] that is rooted at

i. Such a tree exists when the edge weights we are nonnegative. Then, j must be a leaf of

this tree; if otherwise, let L be the set of leaves of the shortest-path tree that are not i

and see that C \L would be a smaller length-k i, j-connector. Further, j must be the only

leaf; if otherwise, C \ (L \ {j}) would be a smaller length-k i, j-connector. By the same

arguments, v must be the only leaf, and so j = v.

In the second case, suppose that the sets {i, j} and {u, v} have no vertices in common.

Again, consider a shortest-path tree of G[C] that is rooted at i. As before, j must be the

only leaf of this tree, and so the tree is in fact an i, j-path. Moreover, u and v, which are

distinct from i and j, must belong to this tree and thus are in the path’s interior. The

vertices belonging to its u, v-subpath form a length-k u, v-connector that is smaller than

C, contradicting the minimality of C. Thus, this case cannot happen.

For the last claim, consider the triangle on vertices {i, j, j ′} where edges {i, j} and {i, j′}

have weight 2 and {j, j′} has weight −1. In this case, C = {i, j, j ′} is a minimal length-1

i, j-connector and a minimal length-1 i, j′-connector. �

Proof of Proposition 1. Let x∗ ∈ {0,1}|Ek| be a binary vector, D⊆ V be a deletion set,

and yD ∈ {0,1}n be its characteristic vector. To prove the claim, it suffices to show that

∃z∗ ∈ {0,1}|C| s.t. (x∗, yD, z∗) satisfies (5b)-(5e)⇐⇒ ∀e= {i, j} ∈Ek, x∗e =

1 if distG−D(i, j)≤ k

0 if distG−D(i, j)>k.
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( =⇒ ) Suppose that there exists a binary vector z∗ ∈ {0,1}|C| such that (x∗, yD, z∗)

satisfies constraints (5b)-(5e). In the first case, suppose the endpoints of power graph edge

e= {i, j} ∈Ek satisfy distG−D(i, j)≤ k. Then, there exists a minimal length-k i, j-connector

C with C ⊆ V \D. Then, x∗e = 1 by

x∗e + 0≥ z∗C + 0 = z∗C +
∑
v∈C

yDv ≥ 1,

where the first inequality holds by constraints (5d) and the second inequality holds by

constraints (5b). In the other case, distG−D(i, j) > k. In this case, D hits every minimal

length-k i, j-connector C, i.e., for every C ∈ Ck
ij there exists a vertex from C that also

belongs to D. Then z∗C = 0 by z∗C + 1 = z∗C + yDv ≤ 1, where the inequality holds by con-

straints (5c). Constraints (5e) then show that x∗e ≤
∑

C∈Ck
ij
z∗C ≤ 0, as desired.

(⇐= ) Suppose that for each edge e= {i, j} ∈Ek of the power graph, x∗e = 1 if and only if

distG−D(i, j)≤ k. We construct a binary vector z∗ ∈ {0,1}|C| such that (x∗, yD, z∗) satisfies

constraints (5b)-(5e). For each connector C ∈ C, define

z∗C :=

1 if D∩C = ∅

0 if D∩C 6= ∅.

By this definition, (x∗, yD, z∗) satisfies constraints (5b) and (5c).

Now, we show that each constraint (5d) is satisfied. Consider an edge e= {i, j} ∈Ek of

the power graph and a minimal length-k i, j-connector C ∈Ck
ij. In the first case, where x∗e =

1, the constraint is satisfied as x∗e = 1≥ z∗C . In the other case, where x∗e = 0, distG−D(i, j)>k

holds by the assumption. This implies that every length-k i, j-connector is hit by D. In

particular, this is true for C, so z∗C = 0. Thus, the constraint is satisfied as x∗e = 0≥ 0 = z∗C .

Lastly, we show that each constraint (5e) is satisfied. Consider e = {i, j} ∈ Ek. In the

first case, where x∗e = 0, the constraint is obviously satisfied. In the other case, x∗e = 1 and

distG−D(i, j)≤ k. This implies that at least one minimal length-k i, j-connector is not hit

by D, and the associated z∗ value equals one, so
∑

C∈Ck
ij
z∗C ≥ 1 = x∗e, as desired. �

Proof of Lemma 6. If m ≤ k then the number of edges (and minimal connectors) is

bounded by a constant in which case the lemma easily holds, so we assume that k <m. To

prove the claim, we construct an injective map f from the set of minimal connectors C =

∪i,jCk
ij to a set F of appropriate size. By Lemma 5, every minimal length-k i, j-connector
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C ∈ Ck
ij induces an i, j-path graph, say i = v0-v1-v2-· · · -vq = j, where q ≤ k. For such a

connector C, define f(C) as follows

f(C) :=



(
∅,
{
{i, v1},{v2, v3}, . . . ,{vq−1, j}

})
if |C| ≥ 2 is even (q odd)

(
i,
{
{v1, v2},{v3, v4}, . . . ,{vq−1, j}

})
if |C| ≥ 3 is odd (q even) and i < j

(
j,
{
{i, v1},{v2, v3}, . . . ,{vq−2, vq−1}

})
if |C| ≥ 3 is odd (q even) and i > j.

Observe that f maps a connector C to an ordered pair (vC ,EC) where vC ∈ V ∪{∅} and

EC ⊆ E. See that, when |C| is even, f maps C to (q + 1)/2 edges; when |C| is odd, f

maps C to a vertex and q/2 edges. Define F := {f(C) | C ∈ C}. By assumption that G

is connected n =O(m), and since k is a constant, nk =O(m). Then, we can bound the

number of minimal connectors as follows:

|C|= |F | ≤
k∑
q=1

(q odd)

(
m

(q+ 1)/2

)
+

k∑
q=2

(q even)

n

(
m

q/2

)
.

So, when k≥ 1 is odd,

|C| ≤ k+ 1

2

(
m

(k+ 1)/2

)
+
k− 1

2
n

(
m

(k− 1)/2

)
=O

(
k

(
m

(k+ 1)/2

))
=O(m(k+1)/2),

where the inequality holds because
(
a
b

)
≤
(
a
c

)
holds for all positive integers b≤ c≤ ba/2c.

When k≥ 2 is even,

|C| ≤ k

2

(
m

k/2

)
+
k

2
n

(
m

k/2

)
=O

(
nk

(
m

k/2

))
=O(nmk/2). �

Proof of Lemma 8. For every C ∈ C, let z̃C = max
{

0,1−
∑

c∈C ŷc
}

. Clearly, (x̂, ŷ, z̃)

satisfies constraints (5b), constraint (5f), and the 0-1 bounds on y and z. To show inequal-

ities (5c) are satisfied, consider a minimal connector C ∈ C and vertex v ∈C and see that

z̃C + ŷv = max

{
0,1−

∑
c∈C

ŷc

}
+ ŷv = max

ŷv,1− ∑
c∈C\{v}

ŷc

≤ 1.
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To show each constraint (5d) is satisfied, consider a power graph edge e= {i, j} ∈Ek and

minimal length-k i, j-connector C ∈Ck
ij. In the first case, where z̃C = 0, constraint (5d) is

obviously satisfied. In the other case, where z̃C = 1−
∑

c∈C ŷc, constraint (5d) holds by

x̂e ≥ ẑC ≥ 1−
∑
c∈C

ŷc = z̃C .

So, by Lemma 7, (x̂, ŷ, z̃) belongs to PATH↑x.

Finally, to show that inequalities (6) are satisfied, consider a power graph edge {i, j} ∈Ek

and a minimal length-k i, j-connector C ∈Ck
ij with at least three vertices, and see that

z̃C\{i}− ŷi = max

0,1−
∑

c∈C\{i}

ŷc

− ŷi
= max

{
−ŷi,1−

∑
c∈C

ŷc

}

≤max

{
0,1−

∑
c∈C

ŷc

}
(= z̃C)

≤max

0,1−
∑

c∈C\{i}

ŷc

= z̃C\{i}. �

Proof of Proposition 2. Let x∗ ∈ {0,1}|Ek| be a binary vector, D⊆ V be a deletion set,

and yD ∈ {0,1}n be its characteristic vector. It suffices to show that

(x∗, yD) satisfies (7b) and (7c)⇐⇒ ∀e= {i, j} ∈Ek, x∗e =

1 if distG−D(i, j)≤ k

0 if distG−D(i, j)>k.

( =⇒ ) Suppose (x∗, yD) satisfies constraints (7b) and (7c). In the first case, suppose that

the endpoints of the power graph edge e= {i, j} ∈Ek satisfy distG−D(i, j)≤ k. In this case,

there exists a minimal length-k i, j-connector C with C ⊆ V \D. Then,

x∗e + 0 = x∗e +
∑
v∈C

yDv ≥ 1,

where the inequality holds by constraints (7c). So, x∗e = 1, as desired. In the other case,

suppose that the endpoints of e= {i, j} ∈ Ek satisfy distG−D(i, j)> k. In this case, there

exists a minimal length-k i, j-separator S that is a subset of D. Then,

x∗e + |S|= x∗e +
∑
v∈S

yDv ≤ |S|,
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where the inequality holds by constraints (7b). So, x∗e = 0, as desired.

(⇐= ) Suppose that for each power graph edge e = {i, j} ∈ Ek, x∗e = 1 if and only if

distG−D(i, j)≤ k. To show that constraints (7b) are satisfied, consider an edge e= {i, j} ∈
Ek and a minimal length-k i, j-separator S ∈ Skij. In the first case, where x∗e = 0, the

constraint is obviously satisfied. In the other case, x∗e = 1 and distG−D(i, j)≤ k. This implies

that at least one vertex in S remains intact, i.e.,
∑

v∈S y
D
v ≤ |S| − 1. Then, constraint (7b)

is satisfied, as

x∗e +
∑
v∈S

yDv = 1 +
∑
v∈S

yDv ≤ 1 + (|S| − 1) = |S|.

To show that constraints (7c) are satisfied, consider an edge e= {i, j} ∈Ek and a minimal

length-k i, j-connector C ∈ Ck
ij. In the first case, where x∗e = 1, the constraint is obvi-

ously satisfied. In the other case, x∗e = 0 and distG−D(i, j)> k. Because distG−D(i, j)> k,

D hits every length-k i, j-connector. In particular, D hits C, i.e.,
∑

v∈C y
D
v ≥ 1. Then,

constraint (7c) is satisfied, as

x∗e +
∑
v∈C

yDv = 0 +
∑
v∈C

yDv ≥ 1. �

Lemma 10. For every instance of DCNP, the inclusion THIN ⊆ projx,y PATH holds.

Moreover, the inclusion can be strict for any k≥ 2 under hop-based distances.

Proof of Lemma 10. Suppose that (x∗, y∗) belongs to THIN. We construct a z∗ such

that (x∗, y∗, z∗) belongs to PATH. For each C ∈ C, let

z∗C := min

{
x∗e,1−max

v∈C
y∗v

}
,

where e= {i, j} ∈Ek is the unique pair of vertices for which C is a minimal length-k i, j-

connector (by Lemma 4). Observe that (x∗, y∗, z∗) satisfies constraint (5f) and 0-1 bounds.

To show that constraints (5b) are satisfied, consider a connector C ∈ C and let e= {i, j} ∈
Ek be the associated “endpoints” of this connector. In the first case, where z∗C = x∗e,

z∗C +
∑
v∈C

y∗v = x∗e +
∑
v∈C

y∗v ≥ 1,

where the inequality holds by constraints (7c). Otherwise, z∗C = 1−max{y∗v | v ∈C}, and

z∗C +
∑
v∈C

y∗v ≥ z∗C + max
v∈C

y∗v = 1−max
v∈C

y∗v + max
v∈C

y∗v = 1.
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To show constraints (5c) are satisfied, consider a connector C ∈ C and v ∈C. Then,

z∗C + y∗v = min

{
x∗e,1−max

i∈C
y∗i

}
+ y∗v ≤ 1−max

i∈C
y∗i + y∗v ≤ 1− y∗v + y∗v = 1.

To show that constraints (5d) are satisfied, consider a power graph edge e= {i, j} ∈Ek

and a minimal length-k i, j-connector C ∈Ck
ij. Then,

x∗e ≥min

{
x∗e,1−max

v∈C
y∗v

}
= z∗C .

To show constraints (5e) are satisfied, consider a power graph edge e= {i, j} ∈Ek. In the

first case, where at least one of the minimal length-k i, j-connectors C satisfies z∗C = x∗e, the

inequality x∗e ≤
∑

C∈Ck
ij
z∗C is clear. In the other case, all minimal length-k i, j-connectors C

satisfy z∗C = 1−max{y∗v | v ∈C}. For each such connector C, let vC be a vertex v ∈C that

maximizes y∗v . Then, S :=∪C∈Ck
ij
vC is a length-k i, j-separator because it includes a vertex

from each minimal length-k i, j-connector. We claim that S satisfies

|S| −
∑
s∈S

y∗s ≤ |Ck
ij| −

∑
C∈Ck

ij

y∗vC . (1)

To show inequality (1), let qs = |{C ∈Ck
ij | vC = s}| for every separator vertex s ∈ S. This

(positive) value qs is the number of connectors C ∈Ck
ij for which s is selected as vC . Then,∑

C∈Ck
ij

y∗vC =
∑
s∈S

qsy
∗
s =

∑
s∈S

y∗s +
∑
s∈S

(qs− 1)y∗s ≤
∑
s∈S

y∗s +
∑
s∈S

(qs− 1) =
∑
s∈S

y∗s + |Ck
ij| − |S|,

where the first equality holds since each y∗vC appears qs times in the term
∑

C∈Ck
ij
y∗vC , and

the last equality holds since
∑

s∈S qs is equal to the number of minimal connectors. This

proves inequality (1). Finally,

x∗e ≤ |S| −
∑
s∈S

y∗s ≤ |Ck
ij| −

∑
C∈Ck

ij

y∗vC =
∑
C∈Ck

ij

(1− y∗vC ) =
∑
C∈Ck

ij

z∗C ,

where the first inequality holds by constraint (7b), and the second inequality holds by

inequality (1). So, (x∗, y∗, z∗) satisfies constraints (5e), and thus (x∗, y∗, z∗)∈PATH.

Figure 1 shows the inclusion can be strict for any k≥ 2 under hop-based distances. We

construct a DCNP instance and point (x∗, y∗, z∗) belonging to PATH but (x∗, y∗) /∈THIN.

To complete the example, let ce = 1 for all e∈Ek, av = 1 for all v ∈ V , and b= n
2
. Also,

let y∗v = 1
2

for all vertices v, x∗e′ =
3
4

for the particular power graph edge e′ = {0, k} ∈Ek, and
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0

1

1′

2 . . . k

1

Figure 1 The graph G= (V,E) used to show projx,y PATH 6=THIN.

x∗e = 3
8

for all other power graph edges. Finally, let z∗C = 3
8

for all connectors C ∈ C. Observe

that the minimal length-k 0, k-connectors are Ck
0,k = {{0,1,2, . . . , k},{0,1′,2, . . . , k}}. Note

that S = {2} is a length-k 0, k-separator. While (x∗, y∗, z∗) satisfies the path-like formula-

tion, it violates inequality xe′ + y2 ≤ 1 of type (7b) from the thin formulation. �

Lemma 11. projx,y R is incomparable with projx,y PATH and with THIN.

Proof of Lemma 11. Since THIN⊆ projx,y PATH by Lemma 10, it suffices to show that

projx,y R* projx,y PATH and THIN* projx,y R.

(projx,y R * projx,y PATH). We construct a DCNP instance and point (x̂, ŷ, û) that

belongs to R and show there is no ẑ for which (x̂, ŷ, ẑ) belongs to PATH.

1 2 3

4

5

0.7 0.8 0.7

0.7

0.8

1

Figure 2 The graph G= (V,E) used to show projx,y R* projx,y PATH.

Consider the graph in Figure 2. The ŷ values are given next to the nodes. Let k = 3,

b= 5, and av = 1 for all v ∈ V . Also, for all s∈ {1,2,3}, let

ûs1,2 = 0.2 ûs1,3 = 0.3 ûs1,4 = 0.0 ûs1,5 = 0.1 ûs2,3 = 0.1

ûs2,4 = 0.1 ûs2,5 = 0.0 ûs3,4 = 0.2 ûs3,5 = 0.0 ûs4,5 = 0.1,

with ûsij = ûsji for all i and j. Finally, let x̂e = û3
ij for all e = {i, j} ∈ E3. Observe that

(x̂, ŷ, û) belongs to R. We claim that there is no ẑ for which (x̂, ŷ, ẑ) belongs to PATH. For

contradiction purposes, suppose (x̂, ŷ, ẑ)∈PATH. Consider the power graph edge e= {1,3}
and see that the only minimal length-k 1,3-connector is C = {1,2,3}. Constraints (5d)

force ẑC ≤ x̂e = 0.3 and constraints (5e) force 0.3 = x̂e ≤ ẑC . This implies that ẑC = 0.3.

This contradicts ẑC + ŷ2 ≤ 1. Thus, no ẑ satisfies (x̂, ŷ, ẑ)∈PATH.
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(THIN * projx,y R). We construct a DCNP instance and a point (x̂, ŷ)∈THIN for which

no û has (x̂, ŷ, û)∈R. Consider the graph in Figure 3.

1 2 3

0.1 0.6 0.4

1

Figure 3 The graph G= (V,E) used to show THIN* projx,y R.

The ŷ values are given next to the nodes. Let k= 3, b= 3, and av = 1 for all v ∈ V . Also,

let x̂{1,2} = 0.3, x̂{1,3} = 0.2, and x̂{2,3} = 0.4. Observe that (x̂, ŷ) belongs to THIN. We claim

that there is no û for which (x̂, ŷ, û) belongs to R. For contradiction purposes, suppose

(x̂, ŷ, û)∈R. Constraints (1e) and (1i) force x̂{2,3} = û3
2,3 = û2

2,3 = 0.4 and x̂{1,3} = û3
1,3 = 0.2.

This contradicts û2
2,3 ≤ û3

1,3 + ŷ1 of type (1g). Thus, no û satisfies (x̂, ŷ, û)∈R. �

Proof of Theorem 2. We show that the following three inclusions hold.

THIN↑x ⊆ projx,y PATH↑x ⊆ projx,y R↑x ⊆THIN↑x .

(THIN↑x ⊆ projx,y PATH↑x) If arbitrary polyhedra P and Q satisfy P ⊆Q, then P ↑x ⊆

Q↑x. So, the stated inclusion holds by Lemma 10.

(projx,y PATH↑x ⊆ projx,y R↑x) We prove the statement for hop-based distances, as the

recursive formulation only applies to this case. Suppose (x̂, ŷ, ẑ) belongs to PATH↑x. By

Lemma 8, there is a similar point (x̂, ŷ, z̃) ∈ PATH↑x that satisfies inequalities (6). We

construct a û such that (x̂, ŷ, û) belongs to R↑x. Specifically, for distinct vertices i, j ∈ V

and s∈ {1,2, . . . , k}, let

ûsij := max{z̃C |C ∈Cs
ij}.

By Lemma 3, to show that (x̂, ŷ, û) belongs to R↑x, it suffices to show that (x̂, ŷ, û) satisfies

all constraints defining R except for the constraints xe ≤ ukij and the 0-1 bounds on x. First

see that (x̂, ŷ, û) satisfies constraints (1b) and (1h), as well as the 0-1 bounds on y and u.

To show that constraints (1c) are satisfied, consider an edge {i, j} ∈E. Since C ′ := {i, j}

is the only minimal length-1 i, j-connector,

û1
ij + ŷi + ŷj = max{z̃C |C ∈C1

ij}+ ŷi + ŷj = z̃C′ + ŷi + ŷj ≥ 1,

where the inequality holds by constraint (5b) of the path-like formulation.
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To show constraints (1d) hold, consider distinct vertices i, j ∈ V and s ∈ {1,2, . . . , k}.

Letting C ′ ∈Cs
ij be a minimal length-s i, j-connector C that maximizes z̃C in the definition

of ûsij, see that

ûsij + ŷi = z̃C′ + ŷi ≤ 1,

where the inequality holds by inequality (5c).

To show that constraints (1e) are satisfied, consider an edge {i, j} ∈E. The only minimal

length-s i, j-connector is C ′ = {i, j}, and this is true for all s∈ {1,2, . . . , k}, so

ûsij = max{z̃C |C ∈Cs
ij}= z̃C′ = max{z̃C |C ∈C1

ij}= û1
ij.

To show that constraints (1f) are satisfied, consider a “missing” edge {i, j} /∈ E and

s∈ {2,3, . . . , k}. Let C ′ ∈Cs
ij be a minimal length-s i, j-connector C that maximizes z̃C in

the definition of ûsij, and let q be the vertex of C ′ that neighbors i. Then,

ûsij = z̃C′ ≤ z̃C′\{i} ≤ ûs−1
qj ≤

∑
t∈N(i)

ûs−1
tj .

Here, the first inequality holds by inequality (6), and the second holds because C ′ \ {i} is

a minimal length-(s− 1) q, j-connector and by definition of ûs−1
qj .

To show that constraints (1g) are satisfied, consider a “missing” edge {i, j} /∈E, a neigh-

bor t∈N(i), and s∈ {2,3, . . . , k}. Let C̄ ∈Cs−1
tj be a minimal length-(s−1) t, j-connector C

that maximizes z̃C in the definition of ûsij. Observe that C̄ ∪{i} is a length-s i, j-connector

because

distG[C̄∪{i}](i, j)≤ distG[C̄](t, j) + 1 = (s− 1) + 1 = s.

Let C∗ be the vertices on a shortest i, j-path in G
[
C̄ ∪{i}

]
. See that C∗ is a minimal length-

s i, j-connector as it induces an i, j-path graph and distG[C∗](i, j) = distG[C̄∪{i}](i, j) ≤ s.

Further, Ĉ =C∗ \ {i} belongs to C. Observe that

ûs−1
tj − ŷi = z̃C̄ − ŷi ≤ z̃Ĉ − ŷi ≤ z̃C∗ ≤ û

s
ij,

where the first and second inequalities hold by inequality (6).
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Finally, to show the constraints ukij ≤ xe are satisfied, consider an edge e= {i, j} ∈ Ek.

Letting C ′ ∈Ck
ij be a minimal length-k i, j-connector C that maximizes z̃C in the definition

of ûsij, observe that

ûkij = z̃C′ ≤ x̂e,

where the inequality holds by constraint (5d) of the path-like formulation.

(projx,y R↑x ⊆THIN↑x) We prove the statement for hop-based distances, as the recursive

formulation only applies to this case. Suppose that (x̂, ŷ, û) belongs to R↑x. We show

(x̂, ŷ)∈THIN↑x . By Lemma 9, it suffices to show that (x̂, ŷ) satisfies all constraints defining

THIN except perhaps for constraints of the form xe +
∑

v∈S yv ≤ |S| and xe ≤ 1. First, see

that (x̂, ŷ) satisfies constraint (7d) and the 0-1 bounds on ŷ.

To show constraints (7c) are satisfied, consider a power graph edge e= {i, j} ∈Ek and

minimal length-k i, j-connector C ∈ Ck
ij that, say, induces the path i = c0-c1-· · · -cs = j,

where s≤ k. Then,

x̂e +
∑
v∈C

ŷv ≥ ûkij +
∑
v∈C

ŷv

≥
(
ûk−1
c1j
− ŷi

)
+
∑
v∈C

ŷv

≥
(
ûk−2
c2j
− ŷc1 − ŷi

)
+
∑
v∈C

ŷv

≥ . . .

≥

(
û
k−(s−1)
cs−1j

−
s−2∑
t=0

ŷct

)
+
∑
v∈C

ŷv

= û1
cs−1j

+ ŷcs−1 + ŷj ≥ 1,

where the first inequality holds by xe ≥ ukij, the middle inequalities hold by constraints (1g),

the equality holds by constraints (1e), and the last inequality holds by constraints (1c).

Finally, x̂e ≥ 0 holds for power graph edges e= {i, j} ∈Ek as x̂e ≥ ûkij ≥ 0. �

3. Proofs from Section 4

Proof of Proposition 3. Consider a vertex subset I ⊆ V satisfying conditions (i) and

(ii), and let D0 ⊆ V be a feasible solution with D0 ∩ I 6= ∅. We claim there is a feasible

solution D1 ⊆ V satisfying:
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1. D1 has one fewer vertex of I than D0 does, i.e., |D1 ∩ I|= |D0 ∩ I| − 1; and

2. the objective value of D1 is at least as good as that of D0, i.e., obj(D1)≤ obj(D0).

The proposition would then follow by repeated application of this claim.

To prove the claim, let i be a vertex from D0 ∩ I. In the first case, all neighbors of i

belong to D0 in which case D1 := D0 \ {i} proves the claim. In the other case, suppose

that a neighbor u ∈N(i) of i does not belong to D0. Observe that u cannot belong to I,

because I is independent and contains i (a neighbor of u). So,

D1 := (D0 \ {i})∪{u}

satisfies the first property |D1 ∩ I|= |D0 ∩ I| − 1. Also, D1 satisfies the budget by∑
v∈D1

av =
∑
v∈D0

av + au− ai ≤
∑
v∈D0

av ≤ b.

So, all that remains is to show that obj(D1)≤ obj(D0). Using the shorthand

δ0 = δ(G−D0)k(u) δ1 = δ(G−D1)k(i)

E0 =E((G−D0)
k) E1 =E((G−D1)

k),

we argue that

obj(D1) =
∑
e∈E1

ce =
∑

e∈E1\δ1

ce +
∑
e∈δ1

ce ≤
∑

e∈E0\δ0

ce +
∑
e∈δ0

ce =
∑
e∈E0

ce = obj(D0).

To prove the middle inequality, we show that the following inequalities hold.∑
e∈δ1

ce ≤
∑
e∈δ0

ce (2)

∑
e∈E1\δ1

ce ≤
∑

e∈E0\δ0

ce. (3)

The former inequality (2) holds because if {i, v} ∈ δ1 then {u, v} ∈ δ0 since if there is a

short path from i to v in G−D1, then the same path—but with u substituted for i—exists

in G−D0; moreover, c{i,v} ≤ c{u,v} and all connection costs are nonnegative. Meanwhile,

the latter inequality (3) holds because E1 \ δ1 ⊆ E0 \ δ0 and by the nonnegativity of the

connection costs ce ≥ 0. To see the inclusion E1 \ δ1 ⊆ E0 \ δ0, consider {v,w} ∈ E1 \ δ1.

So, distG−D1(v,w)≤ k and i, u /∈ {v,w}. Let Pvw be a shortest v,w-path in G−D1. If this

path does not cross i, then the same path exists in G−D0, and thus distG−D0(v,w)≤ k.

Meanwhile, if Pvw crosses i, then a similar path P ′vw (of the same length) can be obtained

in G−D0 by replacing i with u, in which case distG−D0(v,w)≤ k. So, {v,w} ∈E0 \ δ0. �
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Proof of Proposition 4. First consider the running time. Checking whether vertex v is

simplicial takes time O(n+m). For example, store N(v) as a boolean n-vector and make

one pass through the edges, counting the number of them {i, j} ∈E for which i and j both

belong to N(v). This number will be
(

deg(v)
2

)
if and only if N(v) is a clique. In this way, step

1 takes time O(nm). Step 2 takes linear time O(m+n) by precomputing and storing the

values max{ce | e ∈ δ(i)} and min{ce | e ∈ δ(i)} for each vertex i. Then, to check condition

(ii), it suffices to check that max{ce | e ∈ δ(i)} ≤ min{ce′ | e′ ∈ δ(u)} for each u ∈ N(i).

Finally, steps 3 and 4 also take linear time O(m+n). Thus, the total time is O(nm). This

is not too costly given that creating the power graph already takes time O(nm).

By steps 1 and 2, I ⊆ S′ and so every vertex i ∈ I is simplicial and satisfies condition

(ii) of Proposition 3. Moreover, step 3 ensures I is independent. Finally, to prove I is

maximum, see that any independent set of simplicial nodes F must be a subset of S′.

Further, we claim that each component Gi of G[S′] is a complete graph, in which case no

more than one vertex can be selected from each in F , i.e., |F | ≤ p. For this, observe that

each component G′ of G[S] is a complete graph. This holds because if G′ is not complete,

then it has q := diam(G′)≥ 2, in which case a diameter-inducing path u0-u1-· · · -uq has a

vertex u1 that is not simplicial in G′ and not simplicial in G, a contradiction. So, I is

maximum. �

Proof of Proposition 5. First consider the hop-based case. Line 1 takes time O(mn) by

using the algorithm of Brandes (2001). In line 3, we compute the objective value obj(D \
{u}) for at most 2b vertices u, and each function evaluation takes time O(mn). This means

that line 3 takes time O(bmn). Since there are b iterations of the for loop, lines 2-4 take

time O(b2mn). When distances are edge-weighted, the analysis is similar, except that the

betweenness centrality computations and function evaluations take time O(mn+n2 logn).

�

4. Omitted Tables

Tables 1 and 2 show results of the models R and THIN when (k, b) = (3,15) and (k, b) =

(4,15), respectively. Similar to when b ∈ {5,10}, THIN outperforms R, by solving all

instances that R can solve and 10 others. Specifically, THIN solves all of the instances

when (k, b) = (3,15), while R terminates with a gap on 4 instances and experiences a

memory crash on 3 others. For a concrete example, observe that R cannot solve instance

SmallWorld when (k, b) = (3,15), while THIN finishes in 40.75 seconds. Also, while R fails

to solve celegansm when (k, b) = (4,15), THIN finishes in under 14 minutes.
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Table 1 Running times, or the best [lower bound, upper bound] at termination, when (k, b) = (3,15). LPNS

indicates that the LP relaxation was not solved within one hour, and MEM denotes a memory crash.

Graph n m |Ek| opt R THIN

karate 34 78 480 0 0.13 0.08

dolphins 62 159 1,107 130 4.40 2.01

lesmis 77 254 2,500 81 1.41 0.80

LindenStrasse 232 303 3,251 756 1.16 0.47

polbooks 105 441 3,510 1,028 7.57 3.20

adjnoun 112 425 5,634 1,681 62.78 18.42

football 115 613 6,247 3,706 [3605,3706] 1134.48

netscience 1,589 2,742 13,087 5,832 24.09 3.12

jazz 198 2,742 18,461 10,843 [10415,11682] 3230.26

SmallWorld 233 994 25,721 3,428 [3346,3428] 40.75

Erdos971 429 1,312 34,086 15,247 23.53 13.28

S.Cerevisae 1,458 1,948 39,091 16,328 48.44 20.17

USAir 332 2,126 46,573 11,546 56.40 24.65

power 4,941 6,594 53,125 47,055 515.28 300.16

H.Pylori 706 1,392 62,028 21,665 131.37 16.86

Harvard500 500 2,043 83,993 6,050 59.25 17.48

homer 542 1,619 91,527 15,575 1954.93 43.05

celegansm 453 2,025 91,531 13,531 [13476,13531] 143.95

email 1,133 5,451 289,259 221,776 1754.64 244.01

hep-th 8,361 15,751 376,431 302,530 MEM 772.16

PGPgiant 10,680 24,316 1,145,492 664,152 MEM 3072.69

cond-mat 16,726 47,594 1,761,969 1,461,085 MEM 5691.04
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Table 2 Running times, or the best [lower bound, upper bound] at termination, when (k, b) = (4,15). LPNS

indicates that the LP relaxation was not solved within one hour, and MEM denotes a memory crash. A question

mark “?” indicates that the optimal objective value for the instance is not known.

Graph n m |Ek| opt R THIN

karate 34 78 553 0 0.20 0.14

dolphins 62 159 1,459 157 23.05 8.44

lesmis 77 254 2,899 81 4.28 1.49

LindenStrasse 232 303 7,257 1,069 3.49 1.23

polbooks 105 441 4,685 1,424 301.24 83.65

adjnoun 112 425 6,178 2,625 2402.56 1597.36

football 115 613 6,555 ? [3732,4748] [3730,4748]

netscience 1,589 2,742 22,847 7,130 115.95 8.44

jazz 198 2,742 19,336 ? [11245,14545] [11250,14524]

SmallWorld 233 994 27,028 4,737 [4426,5428] 1015.02

Erdos971 429 1,312 62,059 ? [32068,33530] [32458,33530]

S.Cerevisae 1,458 1,948 117,958 37,906 84.92 45.56

USAir 332 2,126 53,447 14,605 204.19 118.80

power 4,941 6,594 105,233 88,312 757.77 351.47

H.Pylori 706 1,392 162,758 62,589 488.45 121.86

Harvard500 500 2,043 119,080 9,648 708.36 119.03

homer 542 1,619 133,947 ? [30917,32208] [31135,32208]

celegansm 453 2,025 100,476 29,262 [29153,30093] 800.97

email 1,133 5,451 548,801 ? LPNS LPNS

hep-th 8,361 15,751 1,340,125 1,043,763 MEM 2343.01

PGPgiant 10,680 24,316 4,211,853 ? MEM MEM

cond-mat 16,726 47,594 7,586,150 ? MEM MEM
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Tables 3, 4, and 5 provide results for k= 5 and b∈ {5,10,15}. We compare the R model of

Veremyev et al., as well as THINI, which is the integer separation variant of the thin model.

As one might expect, these instances are more challenging to solve than when k ∈ {3,4}

due to larger number of variables and constraints. For example, observe that for PGPgiant

and cond-mat, there are more than 10 and 22 million variables and unsurprisingly both

models face memory issues. However, here again, THINI performs better than R. Over all

66 instances of the three tables, the R model solves 23 instances, terminates with gap on

15, fails to solve the root LP for 19, and crashes on 9. Meanwhile, the numbers for THINI

are uniformly better: 33, 21, 6, and 6, respectively. For a specific example, observe that

THINI solves power with 4,941 nodes and 6,594 edges for all budget values b ∈ {5,10,15}

under 8 minutes, while R fails on all of them.
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Table 3 Running times, or the best [lower bound, upper bound] at termination, when (k, b) = (5,5). LPNS

indicates that the LP relaxation was not solved within one hour, and MEM denotes a memory crash. A question

mark “?” indicates that the optimal objective value for the instance is not known.

Graph n m |Ek| opt R THINI

karate 34 78 561 45 0.47 0.20

dolphins 62 159 1,717 771 5.38 2.07

lesmis 77 254 2,926 635 58.21 2.01

LindenStrasse 232 303 12,768 5,900 65.39 11.60

polbooks 105 441 5,316 4,230 1006.12 407.74

adjnoun 112 425 6,216 4,850 [4775,4949] 404.70

football 115 613 6,555 ? [5620,5995] [5688,5995]

netscience 1,589 2,742 34,931 15,421 141.89 14.39

jazz 198 2,742 19,495 ? [16715,18121] [16594,18121]

SmallWorld 233 994 27,028 12,689 [12172,12689] 127.25

Erdos971 429 1,312 79,891 ? LPNS [60579,67444]

S.Cerevisae 1,458 1,948 270,717 148,782 574.35 425.89

USAir 332 2,126 54,890 34,280 [33930,34280] 3243.82

power 4,941 6,594 185,992 169,121 LPNS 182.15

H.Pylori 706 1,392 225,276 ? LPNS [109368,173874]

Harvard500 500 2,043 124,560 62,117 [60057,65505] 2368.56

homer 542 1,619 143,902 ? LPNS [86989,87446]

celegansm 453 2,025 102,196 ? LPNS [73474,83161]

email 1,133 5,451 631,370 ? LPNS LPNS

hep-th 8,361 15,751 3,533,314 ? MEM LPNS

PGPgiant 10,680 24,316 10,744,511 ? MEM MEM

cond-mat 16,726 47,594 22,860,636 ? MEM MEM
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Table 4 Running times, or the best [lower bound, upper bound] at termination, when (k, b) = (5,10). LPNS

indicates that the LP relaxation was not solved within one hour, and MEM denotes a memory crash. A question

mark “?” indicates that the optimal objective value for the instance is not known.

Graph n m |Ek| opt R THINI

karate 34 78 561 6 0.41 0.17

dolphins 62 159 1,717 459 57.23 9.76

lesmis 77 254 2,926 180 4.29 1.56

LindenStrasse 232 303 12,768 2,889 47.46 12.61

polbooks 105 441 5,316 2,160 1427.12 176.12

adjnoun 112 425 6,216 3,898 [3455,4007] 2568.78

football 115 613 6,555 ? [4664,5460] [4747,5460]

netscience 1,589 2,742 34,931 10,108 94.94 13.33

jazz 198 2,742 19,495 ? LPNS [13881,16414]

SmallWorld 233 994 27,028 6,363 311.71 211.67

Erdos971 429 1,312 79,891 ? LPNS [40250,58611]

S.Cerevisae 1,458 1,948 270,717 101,678 479.93 769.82

USAir 332 2,126 54,890 ? [24031,28649] [23485,28649]

power 4,941 6,594 185,992 157,108 LPNS 318.85

H.Pylori 706 1,392 225,276 ? LPNS [82441,143178]

Harvard500 500 2,043 124,560 26,709 2396.14 2149.89

homer 542 1,619 143,902 ? LPNS [46396,58639]

celegansm 453 2,025 102,196 ? LPNS [47865,67719]

email 1,133 5,451 631,370 ? LPNS LPNS

hep-th 8,361 15,751 3,533,314 ? MEM LPNS

PGPgiant 10,680 24,316 10,744,511 ? MEM MEM

cond-mat 16,726 47,594 22,860,636 ? MEM MEM
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Table 5 Running times, or the best [lower bound, upper bound] at termination, when (k, b) = (5,15). LPNS

indicates that the LP relaxation was not solved within one hour, and MEM denotes a memory crash. A question

mark “?” indicates that the optimal objective value for the instance is not known.

Graph n m |Ek| opt R THINI

karate 34 78 561 0 0.23 0.11

dolphins 62 159 1,717 166 39.20 9.40

lesmis 77 254 2,926 81 7.71 1.64

LindenStrasse 232 303 12,768 1,354 6.27 5.45

polbooks 105 441 5,316 1,467 1386.05 122.11

adjnoun 112 425 6,216 ? [2153,3199] [2665,2999]

football 115 613 6,555 ? [3540,4939] [3758,4754]

netscience 1,589 2,742 34,931 7,758 702.98 13.44

jazz 198 2,742 19,495 ? [11284,15106] [11249,15106]

SmallWorld 233 994 27,028 4,974 [4746,5430] 3222.91

Erdos971 429 1,312 79,891 ? LPNS [32045,51062]

S.Cerevisae 1,458 1,948 270,717 78,746 [78489,79097] 1216.69

USAir 332 2,126 54,890 16,115 571.54 [16013,16115]

power 4,941 6,594 185,992 147,565 LPNS 454.44

H.Pylori 706 1,392 225,276 ? LPNS [62589,113272]

Harvard500 500 2,043 124,560 15,165 [15131,19294] 3421.44

homer 542 1,619 143,902 ? LPNS [30836,44906]

celegansm 453 2,025 102,196 ? LPNS [29153,46764]

email 1,133 5,451 631,370 ? LPNS LPNS

hep-th 8,361 15,751 3,533,314 ? MEM LPNS

PGPgiant 10,680 24,316 10,744,511 ? MEM MEM

cond-mat 16,726 47,594 22,860,636 ? MEM MEM
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5. Effects of Variable Fixing

To understand the effects of variable fixing, we compare the performance of the R and

THIN models under three settings: (i) with no variable fixing, (ii) with leaf fixing, and

(iii) with simplicial fixing. Since the fixing procedures do not depend on k nor b, we report

results for one set of parameter values, (k, b) = (3,5).

The results for the THIN model are reported in Table 6. We observe that leaf fixing gen-

erally has a negligible impact over no fixing. In most cases, the running times differ by at

most three seconds, with a few exceptions: email by −10 seconds, hep-th by +22 seconds,

and PGPgiant by +16 seconds. Thus, the overall performance appears degraded by leaf fix-

ing. We have no explanation for this phenomenon except for solver erraticism (Fischetti and

Monaci 2014). The effects of simplicial fixing over no fixing are more pronounced and more

uniformly positive, including: jazz by −61 seconds, celegansm by −36 seconds, email

by −22 seconds, hep-th by −239 seconds, PGPgiant by −77 seconds. Lastly, cond-mat is

solved in 2386 seconds with simplicial fixing, but its LP relaxation is left unsolved after

one hour if no fixing is done.

The results for the R model are reported in Table 7. With this model, the effects of fixing

on performance appear more erratic. Under leaf fixing, the notable changes in runtime

include: S.Cerevisae by +5 seconds, power by +8 seconds, H.pylori by +24 seconds,

Harvard by−12 seconds, homer by−217 seconds, celegansm by +33 seconds, and email by

−457 seconds. Overall, there seems to be an (expected) improvement. Under simplicial fix-

ing, the erraticism continues: power by +8 seconds, H.pylori by +53 seconds, Harvard500

by −12 seconds, homer by −321 seconds, celegansm by −14 seconds, and email by −84

seconds. If anything, these results say more about the MIP solver’s sensitivity to small

changes in the R model rather than about the different fixing procedures.

For our final set of remarks, let us compare the two models under these fixing procedures.

Recall that the previous state-of-the-art approach was the R model with leaf fixing. We see

that the THIN model (even without fixing) noticeably outperforms it, including speedups

of: 234 vs. 87 seconds for football, 190 seconds vs. 46 seconds for power, 512 seconds

vs. 35 seconds for homer, 229 seconds vs. 80 seconds for celegansm, and 1173 seconds vs.

136 seconds for email. There are also three instances where the previous state-of-the-art

approach was unable to solve within one hour, but the THIN model (no fixing) could solve:

jazz, hep-th, and PGPgiant. So, while the new simplicial fixing procedure is helpful, the

THIN model appears to be the biggest source of improvement.
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Table 6 Running times of THIN when (k, b) = (3,5) with no fixing, leaf fixing, and simplicial fixing.

Graph n m |Ek| |L| |I| none leaf simplicial

karate 34 78 480 1 12 0.05 0.05 0.04

dolphins 62 159 1,107 9 9 0.79 0.73 0.74

lesmis 77 254 2,500 17 32 0.25 0.21 0.21

LindenStrasse 232 303 3,251 88 92 0.24 0.22 0.21

polbooks 105 441 3,510 0 4 2.51 2.54 2.56

adjnoun 112 425 5,634 10 12 1.04 1.01 0.97

football 115 613 6,247 0 0 86.72 86.93 86.48

netscience 1,589 2,742 13,087 205 680 1.41 1.48 1.19

jazz 198 2,742 18,461 5 14 1142.72 1139.48 1081.24

SmallWorld 233 994 25,721 20 64 5.62 5.53 5.40

Erdos971 429 1,312 34,086 79 116 11.12 10.92 9.93

S.Cerevisae 1,458 1,948 39,091 722 770 6.17 6.04 5.68

USAir 332 2,126 46,573 55 122 29.01 28.24 26.09

power 4,941 6,594 53,125 1,226 1,414 46.48 46.61 46.13

H.pylori 706 1,392 62,028 263 268 9.42 9.14 8.63

Harvard500 500 2,043 83,993 79 134 17.62 16.28 14.54

homer 542 1,619 91,527 198 289 35.49 34.38 32.51

celegansm 453 2,025 91,531 6 95 79.62 76.64 43.40

email 1,133 5,451 289,259 151 197 135.99 126.21 114.46

hep-th 8,361 15,751 376,431 1,481 3,965 410.79 432.41 171.94

PGPgiant 10,680 24,316 1,145,492 4,229 5,299 781.78 798.01 704.55

cond-mat 16,726 47,594 1,761,969 1,849 6,695 LPNS LPNS 2385.66
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Table 7 Running times of R when (k, b) = (3,5) with no fixing, leaf fixing, and simplicial fixing.

Graph n m |Ek| |L| |I| none leaf simplicial

karate 34 78 480 1 12 0.15 0.16 0.14

dolphins 62 159 1,107 9 9 5.31 5.19 5.22

lesmis 77 254 2,500 17 32 0.66 0.60 0.55

LindenStrasse 232 303 3,251 88 92 0.85 0.76 0.70

polbooks 105 441 3,510 0 4 11.78 11.82 15.10

adjnoun 112 425 5,634 10 12 2.90 2.76 2.68

football 115 613 6,247 0 0 234.83 234.07 235.46

netscience 1,589 2,742 13,087 205 680 15.89 15.64 15.56

jazz 198 2,742 18,461 5 14 [15716,16185] [15717,16185] [15732,16185]

SmallWorld 233 994 25,721 20 64 22.18 21.79 21.87

Erdos971 429 1,312 34,086 79 116 19.30 18.54 20.39

S.Cerevisae 1,458 1,948 39,091 722 770 18.73 23.31 22.19

USAir 332 2,126 46,573 55 122 57.66 57.09 54.13

power 4,941 6,594 53,125 1,226 1,414 180.53 189.85 188.23

H.pylori 706 1,392 62,028 263 268 44.40 68.75 97.60

Harvard500 500 2,043 83,993 79 134 76.05 64.08 63.97

homer 542 1,619 91,527 198 289 729.04 511.75 408.50

celegansm 453 2,025 91,531 6 95 196.21 229.47 182.39

email 1,133 5,451 289,259 151 197 1629.49 1172.96 1545.02

hep-th 8,361 15,751 376,431 1,481 3,965 MEM MEM MEM

PGPgiant 10,680 24,316 1,145,492 4,229 5,299 MEM MEM MEM

cond-mat 16,726 47,594 1,761,969 1,849 6,695 MEM MEM MEM
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