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Abstract

In this paper, a heuristic is said to be provably best if, assuming
P 6= NP, no other heuristic always finds a better solution (when one
exists). This extends the usual notion of “best possible” approxima-
tion algorithms to include a larger class of heuristics. We illustrate the
idea on several problems that are somewhat stylized versions of real-life
network optimization problems, including the maximum clique, maxi-
mum k-club, minimum (connected) dominating set, and minimum ver-
tex coloring problems. The corresponding provably best construction
heuristics resemble those commonly used within popular metaheuris-
tics. Along the way, we show that it is hard to recognize whether
the clique number and the k-club number of a graph are equal, yet a
polynomial-time computable function is “sandwiched” between them.
This is similar to the celebrated Lovász function wherein an efficiently
computable function lies between two graph invariants that are NP-
hard to compute.

1 Introduction

Researchers and practitioners often rely upon metaheuristics for NP-hard
combinatorial optimization problems [18]. Their usefulness is twofold. They
find good feasible solutions that can be implemented in practice. Second,
even if they provide no guarantee about solution quality, they can still be
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used to prune the search tree of a branch-and-bound algorithm. Metaheuris-
tics rely on construction heuristics to find initial solutions [17] that are hoped
to provide a good starting point for further search [2]. It is important that
these construction heuristics run very quickly and, as such, one often uses
greedy choices which are also easy to understand and implement [14]. On the
other hand, there is a fair amount of skepticism towards such approaches due
to a lack of supporting theoretical foundations. Indeed, in most cases there
is no provable approximation guarantee for the performance of a given con-
struction heuristic, meaning that the initial solution may be arbitrarily far
away from optimal. Then a reasonable question to ask is, what is the reason
a particular construction heuristic is chosen? Is it really the “best” choice?

For problems that admit a constant-factor approximation, questions of
this type have been answered as follows [27,51]. Assume that we know that
a problem is hard to approximate to within a factor of c− ε for any ε > 0,
where c is a given constant. Then any polynomial-time algorithm that gives
a c-approximate solution can be claimed to be “best possible.” An example
is the k-center problem when the edge weights satisfy the triangle inequality,
which, assuming P 6= NP, has no (2− ε)-approximate algorithm; however,
there is a simple 2-approximate algorithm [28]. For problems that are not
believed to admit constant-factor approximation algorithms, claiming that
an approximation algorithm is best possible may be trickier. For example,
assuming P 6= NP, the maximum clique problem cannot be approximated
to within a factor of n1−ε for any constant ε > 0 [25,52]. However, selecting
a single vertex gives an n-approximation. Should this be considered best
possible?

Another approach for evaluating the quality of a heuristic is through
domination analysis as introduced by [19] and later surveyed by [22]. In
domination analysis, a solution’s quality is noted with respect to that of
other feasible solutions. For example, there exist n-city instances of the
asymmetric traveling salesman problem (ATSP) for which a nearest neigh-
bor heuristic produces the worst of the (n−1)! possible tours. In contrast, a
particular construction heuristic always builds a tour not worse than (n−2)!
of the tours [23]. In this case, its domination number (n − 2)! is close to
the number of feasible solutions. Thus, this ATSP construction heuristic
may be deemed to be of good quality with respect to domination analysis,
despite the fact that the ATSP is inapproximable within any polynomially-
computable function [47]. The nearest neighbor heuristic for ATSP would
be deemed poor.

In this paper, we propose an alternative approach to justify the use of
certain heuristics. It extends the common definition of the “best possible”

2



approximation algorithm to the problems for which a constant-ratio approxi-
mation algorithm is unlikely to be found. Informally, a heuristic is “provably
best” if it is difficult to beat. For brevity, when we refer to a heuristic, we
will implicitly mean polynomial-time heuristic.

Definition 1. A heuristic is said to be provably best for an optimization
problem if, assuming P 6= NP, there is no polynomial-time algorithm that
always finds a better solution (when one exists).

A few points should be made. As a consequence of Definition 1, only
exact algorithms can be provably best for problems that admit polynomial-
time algorithms. Second, as we will see, to prove that a heuristic is provably
best, it suffices to show that it is NP-hard (with respect to Cook reduc-
tions1) to recognize whether there is a gap between the optimal objective
function value and the value of the solution output by the heuristic. Finally,
provably best heuristics are not unique, just as “best possible” approxima-
tion algorithms are not unique. For example, one can always perform local
search after the initial solution has been found. The analysis just implies
that, in some cases, this will be futile.

We focus on some NP-hard graph problems, and show that some simple,
greedy heuristics are provably best. Specifically:

• choosing a vertex of maximum degree and its neighbors is provably
best for the maximum k-club problem for any fixed k ≥ 2;

• a greedy best-in heuristic is provably best for the maximum clique
problem (and, consequently, for maximum independent set);

• a coloring algorithm that finds a Brooks coloring (i.e., with ∆(G)
colors) is provably best for the vertex coloring problem;

• a greedy worst-out heuristic is provably best for the minimum vertex
cover problem; and

• a greedy worst-out heuristic is provably best for the minimum (con-
nected) dominating set problem.

1Recall that showing NP-hardness of a problem using a Cook reduction (i.e.,
polynomial-time Turing reduction) involves demonstrating that, if the problem were solv-
able in polynomial time, then P = NP. In many cases, a Karp reduction (i.e., polynomial-
time many-one reduction) is preferred, since it is a more restrictive type of reduction that
allows for a finer analysis. However, for our purposes, Cook reductions will be enough,
as we are only attempting to discern polynomial-time solvability. For more information
about Cook reductions, Karp reductions, and other types of reductions, consult [34].
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We note that the basic ideas of these construction heuristics have al-
ready been employed for many of these problems. Indeed, the first has been
used as a basis for maximum k-club heuristics [4,48]. A greedy best-in con-
struction heuristic (usually with some randomness incorporated) is a staple
for maximum clique heuristics [15, 29]. Finally, a worst-out heuristic for
minimum connected dominating set has been proposed by [9].

The problems considered in this paper are somewhat stylized versions
of real-life network optimization problems (cf. [10, 44, 45] and references
therein). The k-club definition originates with [42] and has been used to
model cohesive subgroups in the analysis of social and biological networks.
For more on k-clubs and related clique relaxation models consult [44, 48].
Cliques were introduced by [39] in the context of social network analysis
and represent the ‘perfect’ cluster. For more information about cliques and
the maximum clique problem see [3]. Vertex coloring has applications in
frequency assignment in wireless networks, register allocation in compiler
optimization, and scheduling [41]. (Connected) dominating sets have appli-
cations in the design and analysis of communication networks [13,26].

In Section 2.1, we show that, for any fixed k ≥ 2 it is hard to recognize
whether the clique number and the k-club number of a graph are equal,
yet a linear-time computable function is “sandwiched” between them. This
is analogous to the Lovász function (cf. [33, 38]), which is polynomial-time
computable, but lies between two difficult-to-calculate graph invariants –
the clique partitioning number χ̄(G) and the independence number α(G) of
graph G. Moreover, it is NP-hard to recognize whether χ̄(G) = α(G) [8].

In Section 3, we consider a heuristic for the maximum subgraph satis-
fying property Π problem, where Π is any graph property exhibiting the
Lewis-Yannakakis conditions [35]. These conditions state that property Π
should be hereditary on induced subgraphs, and Π should be satisfied by in-
finitely many graphs and unsatisfied for infinitely many graphs. Examples of
such properties include: planar, bipartite, acyclic, degree-constrained, and
complete. The remarkable theorem of [35] implies that this maximization
problem is NP-hard for any such property. The heuristic that we provide
finds a maximal such subgraph in polynomial time under the assumption
that checking whether a graph satisfies Π can be determined in polynomial
time. Whether this heuristic is provably best is left as an open question.

1.1 Notation and terminology

We consider a simple, undirected graph G = (V,E) that has vertex set V
and edge set E. We usually let n = |V |. The induced subgraph of S ⊆ V
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is denoted G[S] := (S,ES), where ES = {{u, v} | u, v ∈ S, {u, v} ∈ E}. The
open neighborhood of a vertex v ∈ V is denoted N(v) := {u ∈ V | {u, v} ∈
E} and the degree of v is given by |N(v)|. The closed neighborhood of
v ∈ V is denoted N [v] := N(v) ∪ {v}. The largest degree of a vertex in
G is denoted ∆(G). Let diam(G) denote the diameter of graph G, that is
diam(G) := max{dist(i, j) | i, j ∈ V }, where dist(i, j) is the length of a
shortest path between vertices i and j in G (measured by the number of
edges). A subset of vertices C ⊆ V is called a k-club if diam(G[C]) ≤ k.
A clique is a subset of pairwise-adjacent vertices, i.e., a 1-club. A subset
D ⊆ V of vertices is called a dominating set if every vertex from V \D has
a neighbor in D. A dominating set that induces a connected subgraph is
called a connected dominating set.

2 Some Provably Best Heuristics

We consider the following NP-hard combinatorial optimization problems
defined on a graph G = (V,E). Each problem is well studied in the litera-
ture.

• maximum k-club, k ≥ 2. Find a largest subset S ⊆ V of vertices
such that diam(G[S]) ≤ k.

• maximum clique. Find a largest subset S ⊆ V of vertices such that
diam(G[S]) = 1.

• minimum vertex coloring. Color the vertices of G using a minimum
number of colors such that adjacent vertices receive different colors.

• minimum vertex cover. Find a smallest subset S ⊆ V of vertices
such that each edge in E has an incident vertex in S.

• minimum dominating set. Find a smallest subset S ⊆ V of vertices
such that every vertex in V \ S has a neighboring vertex in S.

• minimum connected dominating set. Find a smallest dominating
set that induces a connected subgraph.

Before moving on to the heuristics and NP-hardness reductions, we
will need the following lemma which will be used implicitly throughout the
paper. Essentially, it says that a search problem is at least as hard as the
corresponding decision problem.
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Lemma 1. Assume P 6= NP. A heuristic is provably best if no polynomial-
time algorithm determines whether its output is optimal.

Proof. By contradiction. Suppose there is no polynomial-time algorithm to
test whether the output of heuristic A is optimal, but that A is not provably
best. Since A is not provably best, there is another heuristic A′ that always
finds a better solution than A (when one exists). Thus, A′ can be used to
determine whether A outputs an optimal solution, a contradiction.

2.1 The maximum k-club problem

For a simple undirected graph and a given positive integer k, a k-club is
a subset of vertices that induces a subgraph of diameter at most k, and
the k-club number ω̄k(G) is the cardinality of a largest k-club in G. The
maximum k-club problem, which is to find a largest k-club in a graph, is
NP-hard for any fixed k [5], even if restricted to graphs of diameter k+1 [1].
Even worse, the problem of determining whether a k-club is maximal (by
inclusion) is coNP-complete [40] for any fixed k ≥ 2; in contrast, when
k = 1 (i.e., clique), verifying maximality is trivial.

Denote by ω̄k(G) the k-club number of G, which is the size of a largest
k-club in G. Clearly, for j < k we have

ω̄j(G) ≤ ω̄k(G).

Note that a 1-club is equivalent to a clique, so ω̄1(G) ≡ ω(G), where ω(G)
is the clique number of G. For k ≥ 2, we have two obvious inequalities:

ω(G) ≤ ∆(G) + 1 ≤ ω̄k(G), (1)

in which, similarly to the famous Sandwich Theorem [33], a polynomially-
computable value is sandwiched between two values that are NP-hard to
compute. In an interesting related paper, [8] have shown that it is NP-hard
to check whether χ̄(G) = α(G), where χ̄(G) denotes the cardinality of a
minimum clique partitioning in G and α(G) is the independence number
of G. This is in contrast to the fact that checking whether a graph G is
perfect (i.e., for every subset S of vertices we have χ̄(G[S]) = α(G[S])) is
polynomial-time solvable [12]. The Busygin-Pasechnik result implies that
any polynomially-computable parameter that lies between α(G) and χ̄(G)
will provide a provably best upper bound on the independence number in the
sense that no other polynomially-computable bound can be provably better
for all graphs where this bound can be improved. In particular, the Lovász

6



theta is one such polynomially-computable bound [21]. Analogous to the
Busygin-Pasechnik result, we prove that recognizing whether ω̄j(G) = ω̄k(G)
cannot be done in polynomial time assuming P 6= NP.

Proposition 1. Let j and k be fixed positive integers with j < k. Assum-
ing P 6= NP, there is no polynomial-time algorithm to determine whether
ω̄j(G) = ω̄k(G) for a graph G.

Proof. Let A be an algorithm that, given a graph G, determines whether
ω̄j(G) = ω̄k(G). We provide a Cook reduction that shows that if A runs in
polynomial time then ω̄k(G) can be calculated in polynomial time. Recall
that for any fixed positive integer k it is NP-hard to calculate ω̄k(G) [5].
Algorithm A is used as a subroutine in the last three if-statements of Algo-
rithm 1.

In the following algorithm, Bk
i denotes the (k, i)-broom graph, which

consists of a path of k vertices and i more vertices connected to the same
endpoint of this path. The (k, i)-broom is illustrated in Figure 1. Recognize
that for k ≥ 2, we have ω̄k(B

k
i ) = i+k and ω̄j(B

k
i ) < i+k for any 1 ≤ j < k.

︸︷︷︸
k

} i

Figure 1: The (k, i)-broom graph.

If every connected component has fewer than k vertices then ω̄k(G) < k,
and we can use a naive algorithm to calculate ω̄k(G) in polynomial time
since k is a fixed constant. Otherwise, we can assume that ω̄k(G) ≥ k,
which will be important for the next step of the algorithm.

If the next if-statement is satisfied, then we have established that ω̄j(G) =
ω̄k(G) and the subsequent operations are performed to obtain the k-club
number. In this case, we take the disjoint union of G with a steadily larger
broom graph until the broom graph provides a k-club that is larger than
the j-club number. Then the conclusion is that the previous broom was an
optimal k-club for G′, thus showing that ω̄k(G) = i+ k − 1.

Otherwise, we know that ω̄j(G) < ω̄k(G). We obtain the k-club number
by taking the disjoint union of G with a steadily larger complete graph until
ω(G′) = ω̄j(G

′) = ω̄k(G
′) = ω̄k(G).
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Data: An undirected graph G = (V,E) and fixed positive integers
j < k.

Result: The k-club number ω̄k(G) of G.
if every component of G has fewer than k vertices then

calculate ω̄k(G) naively (check all subsets of < k vertices);
return ω̄k(G)

end
if ω̄j(G) = ω̄k(G) then

for i = 1, . . . , n do
G′ ← G ∪Bk

i ; // disjoint union of G with (k, i)-broom
graph

if ω̄j(G
′) 6= ω̄k(G

′) then
return i+ k − 1

end

end

else
for i = 1, . . . , n do

G′ ← G ∪Ki; // disjoint union of G with Ki, the

complete graph on i vertices

if ω̄j(G
′) = ω̄k(G

′) then
return i

end

end

end

Algorithm 1: Calculating the k-club number using an oracle that
checks if ω̄j(G) = ω̄k(G).

Theorem 1. Let k ≥ 2 be a fixed integer. Assuming P 6= NP, no polynomial-
time algorithm determines whether ω̄k(G) = ∆(G) + 1. Accordingly, the
greedy heuristic of selecting a maximum degree vertex and its neighborhood
is provably best for the maximum k-club problem.

Proof. Assuming P 6= NP, no polynomial-time algorithm determines whe-
ther ω(G) = ω̄k(G) for a graph G (by Proposition 1). Recall that ω(G) ≤
∆(G) + 1 ≤ ω̄k(G). Note that it is easy to check if ω(G) = ∆(G) + 1;
check if the neighborhood of a maximum degree vertex is a clique. Thus,
a polynomial-time algorithm that determines whether ∆(G) + 1 = ω̄k(G)
could be used to check if ω(G) = ω̄k(G) in polynomial time.
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It is perhaps interesting to note the ways in which the clique/k-club
sandwich is different or similar to the Lovász theta sandwich. In both cases,
the “meat” of the sandwich is polynomially computable, and the “bread”
is NP-hard to compute. However, the former provides a feasible solution,
while the latter only provides a bound. Second, in the clique/k-club sand-
wich, both slices of bread are the result of maximization problems, whereas
the Lovász sandwich involves both maximization and minimization.

2.2 The maximum clique problem

For any fixed ε > 0, the maximum clique problem is inapproximable within
a factor of n1−ε, unless P = NP [25, 52]. This would then seem to suggest
that the best one can hope for is to pick a single vertex since this gives
an n-approximation. This, however, would not be provably best. This is
because one can easily check if a graph has a clique of size two. In fact, no
algorithm that searches for a clique of a constant size can be deemed prov-
ably best. However, there is a simple, linear-time heuristic that is provably
best. It relies on a greedy, degree-based ordering, which is common in exact
algorithms for the maximum clique problem [7,11,43].

Data: An undirected graph G = (V,E).
Result: A maximal clique C ⊆ V of G.
initialize C ← ∅ and sort vertices (v1, . . . , vn) by nonincreasing degree;
for j = 1, . . . , n do

if C ∪ {vj} is a clique then
C ← C ∪ {vj};

end

end
return C

Algorithm 2: A provably best heuristic for the maximum clique prob-
lem.

Proposition 2. Algorithm 2 is provably best for the maximum clique prob-
lem.

Proof. Let A be an algorithm that determines whether the output of Al-
gorithm 2 is optimal. We provide a Cook reduction that shows that if A
runs in polynomial time, then it could be used to determine the clique num-
ber in polynomial time. Specifically, algorithm A is used in Algorithm 3 to
determine whether |Ci| = ω(G′).
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Data: An undirected graph G = (V,E).
Result: The clique number ω(G) of G.
initialize G′ = (V ′, E′)← G and i← 1;
do

Ci ←GreedyClique(G′); // using Algorithm 2

if |Ci| = ω(G′) then
return |Ci|

else
V ′ ← V ′ ∪ {v′i};
E′ ← E′ ∪ {{v′i, u} | u ∈ Ci};
G′ ← (V ′, E′);
i← i+ 1;

end

loop

Algorithm 3: Calculating the clique number using an optimality-
checking oracle.

There are two key points to the correctness of Algorithm 3:

1. Ci+1 = Ci ∪ {v′i} for any i ≥ 1, and

2. ω(G′) does not change between iterations of the loop.

These two points would then imply that the number of iterations of the
loop is at most |V | and in each iteration |V ′| ≤ 2|V |, so the reduction is
polynomial. The first point is clear by construction of G′ and the ordering
used in Algorithm 2. Now, see that the new vertex v′i that is added to G′

has |Ci| < ω(G′) neighbors, so it cannot belong to a clique of size > ω(G′).
Thus, point 2 follows by induction on the number i of loop iterations.

2.3 The minimum vertex coloring problem

The coloring problem is well known to be computationally intractable. It
asks: given a graph G, color its vertices using a minimum number χ(G)
of colors such that no pair of adjacent vertices take the same color. The
problem of testing if a graph can be properly k-colored was one of Richard
Karp’s original 21 NP-complete problems [32]. Within just a few years,
coloring was shown to be NP-complete in ever more restrictive cases; NP-
completeness holds for any fixed k ≥ 3 [36] even in planar graphs [50] of
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maximum degree four [16]. In contrast, 1-colorability is trivial to deter-
mine, and breadth-first search determines 2-colorability in linear time. The
problem of approximating the chromatic number is also hard – finding an
(n1−ε)-approximate solution is NP-hard for any constant ε > 0 [52]. This
might seem to suggest that the best one can do is to give each vertex its
own color since this gives an n-approximation. However, this would not be
provably best, as one can quickly check if the graph has an (n− 1)-coloring.

Due to the very restrictive cases of coloring that remain hard, it is easy
to show that several known algorithms are provably best. For example,
since 3-colorability remains NP-hard in planar graphs, the quadratic-time
four-coloring algorithm of [46] is provably best for planar graphs. However,
this algorithm is specifically designed to accept planar graphs as input. So,
we require a heuristic that will properly color an arbitrary graph. In this
case, recall Brooks’ theorem [6] that states that a simple, connected graph
G satisfies χ(G) ≤ ∆(G) unless it is complete or an odd cycle. Thus, since
it is NP-hard to determine if χ(G) < ∆(G) (since testing 3-colorability of
a graph with ∆(G) = 4 is hard), we have the following result.

Proposition 3. Any heuristic that finds a ∆(G)-coloring (i.e., a Brooks
coloring) of graph G is provably best for the vertex coloring problem.

We note that there are many ways to find a Brooks coloring (when one
exists), see e.g., [20, 24,30,31,37,49].

2.4 Grab bag: Independent Set, Clique Cover, Vertex
Cover, (Connected) Dominating Set

Using common NP-hardness reductions, we can establish provably best
heuristics for the problems of finding: a maximum independent set, min-
imum clique cover, minimum vertex cover, and minimum (connected) dom-
inating set.

Recall that a maximum independent set (resp., minimum clique cover) of
a graph G can be found by finding a maximum clique (resp., minimum vertex
coloring) of G, the complement of G. Thus, in a provably best heuristic for
the clique cover problem, take the complement graph and find a Brooks
coloring. Also, Algorithm 4 is provably best for the maximum independent
set problem, since it finds the same independent set that would be found by
complementing the graph and finding a maximal clique via Algorithm 2.

Then recall that the complement V \ C of a maximum independent set
C is a minimum vertex cover. This implies that Algorithm 5 is provably
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Data: An undirected graph G = (V,E).
Result: A maximal independent set C ⊆ V of G.
initialize C ← ∅ and sort vertices (v1, . . . , vn) by nondecreasing
degree;
for i = 1, . . . , n do

if C ∪ {vi} is an independent set then
C ← C ∪ {vi};

end

end
return C

Algorithm 4: A provably best heuristic for the maximum independent
set problem.

best for the minimum vertex cover problem, since it finds the same minimal
vertex cover that would be found using Algorithm 4.

Data: An undirected graph G = (V,E).
Result: A minimal vertex cover C ⊆ V of G.
initialize C ← V and sort vertices (v1, . . . , vn) by nondecreasing
degree;
for i = 1, . . . , n do

if C \ {vi} is a vertex cover then
C ← C \ {vi};

end

end
return C

Algorithm 5: A provably best heuristic for the minimum vertex cover
problem.

Finally, the same heuristic is provably best for the minimum (connected)
dominating set problem. This follows by a standard reduction from the min-
imum vertex cover problem in a graph G = (V,E) to the minimum (con-
nected) dominating set problem in a graph G′ = (V ′, E1 ∪ E2), where V ′ =
V ∪E, E1 = {{u, v} | u, v ∈ V, u 6= v}, and E2 = {{e, v} | e = {u, v} ∈ E}.
Algorithm 6 is provably best since it finds a minimal (connected) dominating
set that maps to the minimal vertex cover found in Algorithm 5.
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Data: A (connected) undirected graph G = (V,E).
Result: A minimal (connected) dominating set D ⊆ V of G.
initialize D ← V and sort vertices (v1, . . . , vn) by nondecreasing
degree;
for i = 1, . . . , n do

if D \ {vi} is a (connected) dominating set then
D ← D \ {vi};

end

end
return D

Algorithm 6: A provably best heuristic for the minimum (connected)
dominating set problem.

3 The Maximum Subgraph Satisfying Property Π
Problem

After seeing the provably best heuristics in Section 2 for clique, independent
set, vertex cover, and dominating set, one may notice that they are very
similar. For the maximization problems, the strategy is a best-in greedy
strategy, and the minimization problems use a worst-out strategy. More-
over, the problems themselves are very similar as the class of feasible so-
lutions is closed under taking either supersets or subsets. However, it can
be seen that these heuristics are not provably best for all independence sys-
tems, as evidenced by the maximum matching problem, where the best-in
heuristic does not always find an optimal solution, but the problem is in-
deed polynomial-time solvable. But what happens if we restrict ourselves to
Lewis-Yannakakis style graph problems?

Recall that a Lewis-Yannakakis graph property Π is hereditary on in-
duced subgraphs, is satisfied by infinitely many graphs, and is not satisfied
for infinitely many graphs. Examples of such properties include: planar, bi-
partite, acyclic, degree-constrained, and complete. The remarkable theorem
of [35] implies that the problem of finding a largest subset S of vertices such
that G[S] satisfies Π is NP-hard.

We describe a heuristic for this very general problem under the as-
sumption that there is a known polynomial-time algorithm for determining
whether a graph satisfies property Π. Note that, by Lewis and Yannakakis,
Π will either be satisfied by all complete graphs or it will be satisfied by all
empty (i.e., edgeless) graphs.
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Data: An undirected graph G = (V,E) and a Lewis-Yannakakis
property Π.

Result: A maximal subset C ⊆ V of vertices such that G[C] satisfies
Π.

initialize C ← ∅;
if all complete graphs satisfy Π then

sort vertices (v1, . . . , vn) by nonincreasing degree;
else

sort vertices (v1, . . . , vn) by nondecreasing degree;
end
for i = 1, . . . , n do

if G[C ∪ {vi}] satisfies Π then
C ← C ∪ {vi};

end

end
return C

Algorithm 7: A heuristic for the maximum Π-subgraph problem.

Open Question. Is Algorithm 7 provably best for the maximum Π-subgraph
problem for any Lewis-Yannakakis property Π?

4 Discussion and Concluding Remarks

We have shown that simple heuristics are provably best for some NP-hard
graph problems. The heuristics are “provably best,” in the sense that they
are hard to beat in the worst case; assuming P 6= NP, no polynomial-
time heuristic always finds a better solution (when one exists). However,
this should not prevent practitioners from designing more sophisticated ap-
proaches, since the analysis only shows that these heuristics are hard to beat
in the worst case. Nevertheless, it does provide some theoretical justification
for their use as a subroutine within a larger metaheuristic approach. Indeed,
variants of these heuristics are commonly used within popular metaheuris-
tics.

A notable contribution of this paper is a “sandwich theorem” that states
that the quantity ∆(G) + 1 lies between the clique number ω(G) and the
k-club number ω̄k(G) of a graph G, yet it is difficult to tell whether ω(G) =
ω̄k(G) when k ≥ 2. Our work shows that ∆(G) + 1 is a provably best
upper bound for the maximum clique problem, as well as a provably best
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lower bound for the maximum k-club problem. This is analogous to the
Lovász function’s “sandwich” relationship with the independence and clique
partitioning numbers of a graph.

Admittedly, there are potential drawbacks to a provably best analysis
presented in this paper. A provably best heuristic may perform very well on
a subset of hard instances, but poorly on others. As an example, consider
the four-coloring algorithm of [46] for planar graphs. A modified version of
this algorithm provides a provably best heuristic for the coloring problem in
arbitrary graphs that performs rather poorly for most instances. It operates
as follows: if the input graph is planar, find a four-coloring; otherwise give
every vertex its own color. However, one could argue that any heuristic that
attempts to solve the coloring problem in arbitrary instances is doomed to
perform poorly (due to the infamous inapproximability of coloring). Thus,
it may be fruitful to explore provably best heuristics for restricted classes
of input instances. This may be more satisfying when particular types of
instances are more likely to occur in practice.

On a positive note, provably best heuristics can be used to rule out infe-
rior approaches. There is little use in a heuristic A that has been shown to
not be provably best. In this case, there is another polynomial-time heuris-
tic A′ that returns optimal solutions anytime that A does. Furthermore, A′
returns a strictly better solution on all other instances. A possible caveat is
that A′ might be significantly slower than A. However, most of the provably
best heuristics discussed in this paper can be implemented to run in linear
time.

We note that a slight modification to our provably best definition ren-
ders it worthless. In this paper, we say that a heuristic is provably best if no
other heuristic always outperforms it (when possible). One may want to re-
lax “always” to “at least once.” Under this modification, no heuristic can be
provably best for NP-optimization problems that do not admit polynomial-
time algorithms. Indeed, suppose that a polynomial-time heuristic A is
provably best (for a hard problem) under the modified, relaxed definition.
Since the problem does not admit polynomial-time algorithms, A must re-
turn a suboptimal solution on at least one instance x. Note that x is of finite
size and thus can be solved in constant time. Then the new heuristic A′ that
returns an optimal solution when it encounters instance x and simulates A
otherwise demonstrates that A cannot be provably best, a contradiction.

Many important problems that are tackled with metaheuristics were not
considered in this paper. A provably best analysis can be performed to
justify the use of existing as well as future construction heuristics (or to
rule out inferior ones). The relative simplicity of our analysis in this paper
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suggests that it should not be hard to apply to other problems.
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[24] P. Hajnal and E. Szemerédi, Brooks coloring in parallel, SIAM J Discr
Math 3 (1990), 74–80.

[25] J. H̊astad, Clique is hard to approximate within n1−ε, Acta Mathemat-
ica 182 (1999), 105–142.

[26] T.W. Haynes, S.T. Hedetniemi, and P.J.B. Slater, Fundamentals of
domination in graphs, Vol. 208 of Pure and Applied Mathematics, Mar-
cel Dekker, Inc, 1998.

[27] D.S. Hochbaum (Editor), Approximation algorithms for NP-hard prob-
lems, PWS Publishing Co., 1996.

[28] D.S. Hochbaum and D.B. Shmoys, A best possible heuristic for the
k-center problem, Math Oper Res 10 (1985), 180–184.

[29] A. Jagota and L.A. Sanchis, Adaptive, restart, randomized greedy
heuristics for maximum clique, J Heuristics 7 (2001), 565–585.

[30] M. Karchmer and J. Naor, A fast parallel algorithm to color a graph
with ∆ colors, J Algorithms 9 (1988), 83–91.

[31] H.J. Karloff, An NC algorithm for Brooks’ theorem, Theoret Comput
Sci 68 (1989), 89–103.

[32] R.M. Karp, “Reducibility among combinatorial problems,” Complexity
of computer computations, R.E. Miller and J.W. Thatcher (Editors),
Plenum Press, 1972, pp. 85–103.

[33] D.E. Knuth, The sandwich theorem, Electronic J. Combin 1 (1994),
1–48.

18



[34] R.E. Ladner, N.A. Lynch, and A.L. Selman, A comparison of polyno-
mial time reducibilities, Theoret Comput Sci 1 (1975), 103–123.

[35] J.M. Lewis and M. Yannakakis, The node-deletion problem for heredi-
tary properties is NP-complete, J Comput System Sciences 20 (1980),
219–230.

[36] L. Lovász, Coverings and colorings of hypergraphs, Proc. Fourth South-
eastern Conference Combin, Graph Theory, Comput, Utilitas Mathe-
matica Publishing, Winnipeg, 1973, pp. 3–12.

[37] L. Lovász, Three short proofs in graph theory, J Combinatorial Theory,
Ser B 19 (1975), 269–271.

[38] L. Lovász, On the Shannon capacity of a graph, IEEE Trans Informat
Theory 25 (1979), 1–7.

[39] R.D. Luce and A.D. Perry, A method of matrix analysis of group struc-
ture, Psychometrika 14 (1949), 95–116.

[40] F. Mahdavi Pajouh and B. Balasundaram, On inclusionwise maximal
and maximum cardinality k-clubs in graphs, Discr Optim 9 (2012),
84–97.

[41] E. Malaguti and P. Toth, A survey on vertex coloring problems, Int
Trans in Oper Res 17 (2010), 1–34.

[42] R.J. Mokken, Cliques, clubs and clans, Qual & Quantity 13 (1979),
161–173.
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