
Noname manuscript No.
(will be inserted by the editor)

Political districting to minimize cut edges

Hamidreza Validi · Austin Buchanan

Received: date / Accepted: date

Abstract When constructing political districting plans, prominent criteria
include population balance, contiguity, and compactness. The compactness
of a districting plan, which is often judged by the “eyeball test”, has been
quantified in many ways, e.g., Length-Width, Polsby-Popper, and Moment-
of-Inertia. This paper considers the number of cut edges, which has recently
gained traction in the redistricting literature as a measure of compactness
because it is simple and reasonably agrees with the eyeball test. We study
the stylized problem of minimizing the number of cut edges, subject to con-
straints on population balance and contiguity. With the integer programming
techniques proposed in this paper, all county-level instances in the USA (and
some tract-level instances) can be solved to optimality. Our techniques extend
to minimize weighted cut edges (e.g., to minimize district perimeter length) or
to impose compactness constraints. All data, code, and results are on GitHub.

Keywords political redistricting · contiguity · integer programming ·
branch-and-cut · cut edges · GerryChain · compactness · perimeter

1 Introduction

Political redistricting is the process of partitioning a region (e.g., a state) into
smaller pieces (“districts”) for voting purposes. Typically, redistricting plans
must satisfy criteria such as population balance, contiguity, and compactness.

Hamidreza Validi
Duncan Hall 3018, Department of Computational and Applied Mathematics, Rice Univer-
sity, Houston, TX 77005-1827
E-mail: hamidreza.validi@rice.edu

Austin Buchanan
331 Engineering North, School of Industrial Engineering & Management, Oklahoma State
University, Stillwater, OK 74078
E-mail: buchanan@okstate.edu

2 Hamidreza Validi, Austin Buchanan

Population balance means that the districts should have (roughly) equal pop-
ulations and captures the principle of “one person, one vote”. Meanwhile,
contiguity and compactness are meant to keep geographic locales together, as
their inhabitants may share political interests that may become the subject of
legislation. Contiguity and compactness are sometimes suggested as a means
to combat the most egregious cases of gerrymandering (i.e., redistricting to
benefit or disadvantage a particular group, often a political party or race),
cf. Pennsylvania’s “Twitter plan” [40].

While population balance and contiguity are relatively easy to codify, com-
pactness has been more elusive, prompting dozens of alternative compactness
scores proposed by political scientists, mathematicians, computer scientists,
and operations researchers. This includes the Polsby-Popper score [36, 113,
114] and others that relate to perimeter [41, 112] or moment-of-inertia [69].
While every measure has its flaws [10, 11, 138], social scientists have observed
that in practice many measures of compactness serve as reasonable proxies
for the others [25, 103]. Still, no existing measure best mirrors the “eyeball
test” [78]. Figure 1 shows optimally compact county-level districting plans for
Oklahoma under the compactness measures of cut edges (left) and moment-
of-inertia (right), under a 1% population deviation.

While population balance and contiguity are relatively easy to codify, compact-
ness has been more elusive, prompting dozens of alternative compactness scores
proposed by political scientists, mathematicians, computer scientists, and opera-
tions researchers. This includes the Polsby-Popper score [36, 113, 114] and others
that relate to perimeter [41, 112] or moment-of-inertia [69]. While every measure
has its flaws [10, 11, 137], social scientists have observed that in practice many mea-
sures of compactness serve as reasonable proxies for the others [25, 103]. Still, no
existing measure best mirrors the “eyeball test” [78]. Figure 1 shows optimally com-
pact county-level districting plans for Oklahoma under the compactness measures
of cut edges (left) and moment-of-inertia (right), under a 1% population deviation.

Figure 1: Optimally compact county-level districting plans for Oklahoma under the
compactness measures of cut edges (left) and moment-of-inertia (right).

This paper considers the number of cut edges, which has recently gained traction
in the redistricting literature as a measure of compactness, promoted in large part
by members of the Metric Geometry and Gerrymandering Group [13, 34, 35, 36].
To define cut edges, the region of interest is represented as a graph G = (V, E),
where each vertex i 2 V represents a contiguous piece of the map (e.g., a county or
census tract) and has an associated population pi, and the graph’s edges indicate
adjacency on the map. The edges {i, j} 2 E that are cut are those whose endpoints
i and j belong to di↵erent districts. Intuitively, the cut edges are those edges that
would need to be snipped with a pair of scissors to break the graph into its districts.

Figure 2 provides two ways to partition the 4x4 grid graph into 4 contiguous
districts having equal numbers of vertices. If compactness were measured via cut
edges, then the columns plan, which cuts 12 edges, is the least compact plan pos-
sible. Meanwhile, the squares plan, which cuts 8 edges, is the most compact. Put
di↵erently, the columns plan preserves the fewest edges (12 edges), while the squares
plan has 16 preserved, or intact, edges.

In this paper, we study a stylized redistricting problem in which the task is to
minimize the number of cut edges, while ensuring that each of the k districts D ✓ V
is contiguous (i.e., the induced subgraph G[D] is connected) and has population
p(D) :=

P
i2D pi between L and U . In our experiments, we allow a 1% deviation

(±0.5%) from the ideal population p(V)/k by setting L = d0.995p(V)/ke and U =
b1.005p(V)/kc. This number is chosen to reasonably approximate what has been
allowed for congressional redistricting in the USA [68] and has been a suggested
threshold in a redistricting competition held by reformers in Ohio [5].

2

Fig. 1 Optimally compact county-level districting plans for Oklahoma under the compact-
ness measures of cut edges (left) and moment-of-inertia (right).

This paper considers the number of cut edges, which has recently gained
traction in the redistricting literature as a measure of compactness, promoted
largely by members of the Metric Geometry and Gerrymandering Group [13,
34, 35, 36]. To define cut edges, the region of interest is represented as a graph
G = (V,E), where each vertex i ∈ V represents a contiguous piece of the map
(e.g., a county or census tract) and has an associated population pi, and the
graph’s edges indicate adjacency on the map. The edges {i, j} ∈ E that are
cut are those whose endpoints i and j belong to different districts. Intuitively,
the cut edges are those edges that would need to be snipped with a pair of
scissors to break the graph into its districts.

Figure 2 provides two ways to partition the 4x4 grid graph into 4 contiguous
districts having equal numbers of vertices. If compactness were measured via
cut edges, then the columns plan, which cuts 12 edges, is the least compact
plan possible. Meanwhile, the squares plan, which cuts 8 edges, is the most

Political districting to minimize cut edges 3

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 2: The columns plan cuts 12 edges, while the squares plan cuts 8 edges.

To solve this problem, we propose to use mixed integer programming (MIP)
techniques. We start with two base MIP models—which we call Hess and Labeling—
that are amended with various contiguity constraints, variable fixing procedures,
valid inequalities, and extended formulations. The tractability of MIP models in
practice can depend crucially on how these tools from the MIP arsenal are used. In
both base models, we employ a binary variable ye for each edge, which equals one
when edge e 2 E is cut. The graph G has m edges and n vertices {1, 2, . . . , n}. The
set of k districts is given by [k] := {1, 2, . . . , k}.

Labeling base model. The Labeling base model uses binary variables xij that
equal one if vertex i 2 V is assigned to district j 2 [k]. The essence of this model,
particularly constraints (1b) and (1c), appears in many papers [13, 16, 47, 79, 125].

min
X

e2E

ye (1a)

xuj � xvj  ye 8e = {u, v} 2 E, 8j 2 [k] (1b)
X

j2[k]

xij = 1 8i 2 V (1c)

L 
X

i2V

pixij  U 8j 2 [k] (1d)

x 2 {0, 1}n⇥k, y 2 {0, 1}m. (1e)

The objective (1a) minimizes the number of cut edges. Constraints (1b) indicate
that edge e = {u, v} is cut if vertex u 2 V —but not v 2 V —is assigned to district
j 2 [k]. Constraints (1c) ensure that each vertex i 2 V is assigned to one district.
Constraints (1d) ensure that the population of each district is between L and U .
As written, this model lacks contiguity constraints (discussed later).

We make a few notes about this model. First, the cut edge constraints (1b)
only ensure that if u and v are assigned to di↵erent districts, then the associated
cut edge variable ye equals one. The converse is not imposed. That is, the model
allows u and v to be assigned to the same district and still have ye equaling one.
Since our problem is of the minimization type (and since the objective coe�cients

3

Fig. 2 The columns plan cuts 12 edges, while the squares plan cuts 8 edges.

compact. Put differently, the columns plan preserves the fewest edges (12
edges), while the squares plan has 16 preserved, or intact, edges.

In this paper, we study a stylized redistricting problem in which the task is
to minimize the number of cut edges, while ensuring that each of the k districts
D ⊆ V is contiguous (i.e., the induced subgraph G[D] is connected) and has
population p(D) :=

∑
i∈D pi between L and U . In our experiments, we allow

a 1% deviation (±0.5%) from the ideal population p(V)/k by setting L =
⌈0.995p(V)/k⌉ and U = ⌊1.005p(V)/k⌋. This number is chosen to reasonably
approximate what has been allowed for congressional redistricting [68] and
was used in a redistricting competition held by reformers in Ohio [5].

To solve this problem, we propose to use mixed integer programming (MIP)
techniques. We start with two base MIP models—which we call Hess and
Labeling—that are amended with various contiguity constraints, variable fix-
ing procedures, valid inequalities, and extended formulations. The tractability
of MIP models in practice can depend crucially on how these tools from the
MIP arsenal are used. In both base models, we employ a binary variable ye for
each edge, which equals one when edge e ∈ E is cut. The graph G has m edges
and n vertices {1, 2, . . . , n}. The set of k districts is given by [k] := {1, 2, . . . , k}.

The Labeling base model uses binary variables xij that equal one if vertex
i ∈ V is assigned to district j ∈ [k]. The essence of this model, particularly
constraints (1b) and (1c), appears in many papers [13, 16, 47, 79, 125].

min
∑

e∈E

ye (1a)

xuj − xvj ≤ ye ∀e = {u, v} ∈ E, ∀j ∈ [k] (1b)
∑

j∈[k]

xij = 1 ∀i ∈ V (1c)

L ≤
∑

i∈V

pixij ≤ U ∀j ∈ [k] (1d)

x ∈ {0, 1}n×k, y ∈ {0, 1}m. (1e)

The objective (1a) minimizes the number of cut edges. Constraints (1b) indi-
cate that edge e = {u, v} is cut if vertex u ∈ V —but not v ∈ V —is assigned to

4 Hamidreza Validi, Austin Buchanan

district j ∈ [k]. Constraints (1c) force each vertex i ∈ V to be assigned to one
district. Constraints (1d) ensure that the population of each district is between
L and U . As written, this model lacks contiguity constraints (discussed later).

We make a few notes about this model. First, the cut edge constraints (1b)
only ensure that if u and v are assigned to different districts, then the asso-
ciated cut edge variable ye equals one. The converse is not imposed. That is,
the model allows u and v to be assigned to the same district and still have
ye equaling one. Since our problem is of the minimization type (and since the
objective coefficients of y are positive), this is not a concern; if otherwise, one
should add constraints of the form xuj + xvj + ye ≤ 2 to the model. A second
note is also about the cut edge constraints (1b). For purposes of correctness,
it suffices to impose one constraint for each edge: xuj − xvj ≤ ye. However, it
can be desirable to impose two constraints for strength reasons: xuj−xvj ≤ ye
and xvj − xuj ≤ ye. Third, it suffices to define the y variables as nonnegative
continuous variables, as they will take binary values in optimal solutions by
the cut edge constraints and minimization objective. However, our preliminary
experiments with this relaxation yielded no improvement; in fact, the Gurobi
MIP solver converted them back to binary during presolve.

The Labeling model (1) has many undesirable properties [74]. First, it
gives an extremely weak LP bound. In fact, under the mild assumption that
L ≤ p(V)/k ≤ U which is necessary for the LP to be feasible, the LP relaxation
allows the solution (x̄, ȳ) in which x̄ij = 1/k and ȳe = 0, giving an LP bound
of zero. This is confirmed empirically in Table 1, which reports results for 12
county-level instances that are solved with a näıve implementation of model (1)
and the Gurobi MIP solver. (The test instances and computational setup will
be detailed in Section 3.) Similarly poor results are obtained when contiguity
constraints are added, see Appendix E.

Table 1 Results for näıve implementations of models (1) and (2) under a 3600-second
time-limit (TL). We report the number of branch-and-bound nodes visited (B&B), the LP
bound (LP), the optimal MIP objective value (MIP) or the best lower and upper bound
[LB,UB] at termination, and the MIP time in seconds (time). On right, we report whether
the optimal solutions are contiguous.

Labeling (1) Hess (2) opt.
state n k B&B LP MIP time B&B LP MIP time cont.?
ME 16 2 1 0 8 0.07 1,480 0.27 8 2.32 no
NM 33 3 92 0 17 0.19 49,106 0.48 17 526.52 yes
ID 44 2 52 0 10 0.14 12,326 0.09 10 652.21 yes
WV 55 3 6,524 0 20 2.24 9,301 0.14 [1,20] TL no

LA 64 6 2,540,158 0 [36,45] TL 3,708 0.77 [5,48] TL *

AL 67 7 1,586,159 0 [38,54] TL 2,018 0.94 [14,55] TL *

AR 75 4 266,038 0 32 203.85 25 0.27 [3,45] TL no
OK 77 5 76,338 0 39 132.88 25 0.36 [4,49] TL no
MS 82 4 836,663 0 32 457.61 1 0.25 [2,62] TL no
NE 93 3 2,104 0 19 2.86 1 0.11 [1,30] TL yes
IA 99 4 529,067 0 33 716.04 7 0.18 [1,51] TL yes
KS 105 4 320,451 0 31 425.73 1 0.18 [1,53] TL no

* If given more time, these approaches would return “no”.

Political districting to minimize cut edges 5

Another drawback of this model is symmetry: if the vertices can be par-
titioned into k suitable districts D1, D2, . . . , Dk, then permuting the district
labels gives k! different x-representations of this same districting plan. The
point (x̄, ȳ) that has x̄ij = 1/k and ȳe = 0 will lie in their convex hull and
thus be LP feasible, even in the presence of contiguity constraints or other
valid inequalities that act in the x-space. Not surprisingly, the two states in
Table 1 that have the most districts and arguably the “most” model sym-
metry are unsolved by Gurobi within a one-hour time-limit, despite visiting
more than one million branch-and-bound nodes. Model symmetry is generally
known to cause trouble for LP-based branch-and-bound methods, which has
led to a rich literature on symmetry handling [96, 111]. One approach that we
will use is the extended formulation for partitioning orbitopes [46].

We also observe that contiguity does not come “for free” as some re-
searchers have suggested. The cut edges objective function, which seeks com-
pact solutions, tends to generate nearly contiguous solutions. However, in
the absence of explicit contiguity constraints, the Labeling model gives non-
contiguous solutions for 67% of the county-level instances, as the right-most
column of Table 1 shows. We will see that the same phenomenon occurs on
more granular tract-level instances.

The Hess base model starts with the binary variables xij of Hess et al. [69],
which equal one when vertex i ∈ V is assigned to (the district rooted at)
vertex j ∈ V . This leads to the following model, whose essence, particularly
constraints (2b)–(2e), appears in numerous papers [3, 104, 130, 132].

min
∑

e∈E

ye (2a)

xuj − xvj ≤ ye ∀e = {u, v} ∈ E, ∀j ∈ V (2b)
∑

j∈V

xij = 1 ∀i ∈ V (2c)

Lxjj ≤
∑

i∈V

pixij ≤ Uxjj ∀j ∈ V (2d)

∑

j∈V

xjj = k (2e)

xij ≤ xjj ∀i, j ∈ V (2f)

x ∈ {0, 1}n×n, y ∈ {0, 1}m. (2g)

This model has many similarities to the Labeling model. It differs slightly
because the x variables now allow each vertex i to be assigned to one of n
different districts, and only k of these districts will be selected (2e). This
requires a slight adjustment to the population balance constraints (2d). As
written, this model lacks contiguity constraints. Later, we will review and
experiment with some models from the literature [104, 124, 125, 132]. While
the Hess model has more variables than the Labeling model, it does have one
advantage: the variables xjj act as anchor points for the districts, which can
be helpful when writing contiguity constraints.

6 Hamidreza Validi, Austin Buchanan

The Hess base model has many of the same deficiencies of the Labeling
model—and more! For example, a valid k-partitioning (D1, D2, . . . , Dk) has
|D1||D2| · · · |Dk| representations in the x variables, compared to k! for the La-
beling model. Not surprisingly, a näıve implementation of this model performs
quite poorly, as Table 1 shows. The root LP bounds are all less than one, and
only three of the instances are solved within a one-hour time-limit. Further,
the MIP gaps at termination are awful. For example, the lower bound for West
Virginia stays at one after one hour of computation, even though it is one of
the smaller instances.

One remedy for the model symmetry is to choose an ordering of the ver-
tices (v1, v2, . . . , vn) and impose xij = 0 whenever i comes before j in the
ordering, like the asymmetric representatives model used for graph coloring
problems [20]. This eliminates the model symmetry, but still leaves more than
n2/2 variables. Later, we will see how to choose orderings that lead to sub-
stantial size reductions in practice. On tract-level instances, more than 95%
of the x variables can be fixed a priori.

Disclaimer. Political redistricting is, by its nature, a complex social matter,
and we cannot decide the “best” redistricting plan with a computer alone.
However, we hope that the procedures developed in this paper can nevertheless
be useful for establishing the limits of what is possible in a redistricting plan,
which can inform and assist socially aware redistricting efforts.

Outline. Section 2 reviews the literature on districting, compactness, contigu-
ity constraints, and k-cut problems. Section 3 introduces our test instances and
details our computational setup. Section 4 considers an extended formulation
for the cut edge objective function that is stronger than (1a) and (2a). Sec-
tion 5 covers heuristics. Section 6 and Appendix C propose symmetry handling
and variable fixing techniques for the Hess and Labeling models, respectively.
Section 7 gives final computational experiments. Section 8 concludes the paper.

2 Background and Literature Review

The literature on political districting, gerrymandering, and graph partition-
ing is vast and cannot be covered in depth here. We refer interested readers
to books and surveys written by operations researchers [56, 118, 121, 135],
lawyers [68], political scientists [19, 60], and nonpartisan organizations [88].

As discussed previously, the essence of political districting is to partition
a geographic region into a given number of districts that can be used for
voting purposes. To abide by the “one-person, one-vote” principle, districts
should have roughly the same number of people in them. In the USA, this
is enforced quite closely, with all states’ congressional districts drawn after
the 2010 census differing in population by less than 1%. In fact, most states
drew districts that differed in population by just one person(!). However, this
is impossible in some states that place high priority on preserving political

Political districting to minimize cut edges 7

subdivisions (e.g., counties, cities). For example, state law in Iowa dictates
that counties should not be split between congressional districts. (The same
is true in North Carolina, but doing so would result in a population deviation
too large to abide by federal law, and federal law has supremacy.) There are
other state and federal laws that apply to redistricting. For example, in the
USA, Section 2 of the Voting Rights Act and the Equal Protection Clause of
the 14th Amendment prohibit racial gerrymandering, although this is not as
easy to quantify as population balance and is often litigated. Federal law does
not require congressional districts to be contiguous, but most states do. States
that do not require contiguity typically enact contiguous plans anyway.

Another traditional redistricting principle besides population balance and
contiguity, is compactness. This third criterion [113] asks for districts to not be
“ugly” in shape, preferring circular or square shapes over non-convex shapes
with elongated tentacles. Indeed, in the landmark 1993 case Shaw v. Reno,
the Supreme Court of the United States stated that redistricting “is one area
in which appearances do matter”. Besides the optics, the hope is that ensur-
ing compactness will prevent the most egregious of gerrymanders and keep
communities together. Over the years, many have tried to quantify what it
means for a district to be compact. A popular technique is the Polsby-Popper
score [113], which is defined as 4πA/P 2, where A is the area of the district and
P is its perimeter. The normalizing factor 4π ensures that the score is between
zero and one, with a perfect score of one being given to a circle. This score,
and others defined in terms of district perimeter, are known to suffer from the
coastline paradox wherein borders do not have a well-defined length. Nefarious
actors can exploit this and other implementation choices (e.g., map projection)
to their advantage [10, 11] to hide from the Polsby-Popper score, and others
like the Reock [116], Schwartzberg [122], and convex hull [103] scores.

An alternative compactness score proposed in the OR literature called
moment-of-inertia [69] takes inspiration from physics and does not refer to area
or perimeter. Letting drj denote the distance from a district’s center/root r to
its other vertices j, the moment-of-inertia of a district D ⊆ V can be expressed
as

∑
j∈D pjd

2
rj , where p again represents population. The districting plan’s

moment-of-inertia is taken as the sum of the individual districts’ scores. Since
this is linear, it and related k-median objectives are convenient for use in OR
models [32, 59, 71, 97, 129, 132].

In this paper, we consider the number of cut edges. While cut edges are fre-
quently used in various graph partitioning and clustering applications [9, 15,
66], its use in redistricting applications is a relatively recent phenomenon [27,
39], promoted in large part by members of the Metric Geometry and Gerry-
mandering Group [13, 34, 35, 36]. The reason for using cut edges is threefold:
(1) it is intuitive and easy to explain, making it suitable for non-experts to
understand; (2) the data is transparent and easy to check, making it less prone
to abuse; and (3) this simple score matches the “eyeball test” surprisingly well.

8 Hamidreza Validi, Austin Buchanan

2.1 Districting complexity and methods

Practically any problem related to redistricting is NP-hard [4]. This is an im-
mediate consequence of the population balance constraints, which can be used
to express the NP-hard partition problem. Moreover, redistricting problems
remain hard even when working with unit populations. Dyer and Frieze [42]
consider the problem of partitioning the vertices of a graph into connected sub-
sets, each of size s. By reduction from planar 3-dimensional matching,
they show that this problem is NP-hard on planar bipartite graphs for every
fixed s ≥ 3. They also show that the problem remains hard when s = n/2.
That is, partitioning a graph into two connected districts of equal size is NP-
hard (i.e., our problem where p = 1, k = 2, and L = U = n/2). It should be
noted that this second reduction of theirs does not generate planar instances.

Further, cut edge districting problems are NP-hard, even in the absence of
population balance or contiguity constraints. In the minimum k-cut problem,
the task is to partition the vertices into k (nonempty) subsets so as to minimize
the weight of the edges between the subsets. This problem is NP-hard [58], but
becomes polynomial when k is a fixed constant [58]. When one vertex is fixed
in each subset, we get the multiterminal cut problem, which is NP-hard even
for k = 3 [31]. When this problem is restricted to planar graphs, it remains
NP-hard, but becomes polynomial for fixed constants k, see [31, 67, 136].

Given the hardness of districting, many techniques have been proposed.
Heuristics in the literature run the gamut from greedy construction heuris-
tics [80, 133] to local search [69, 81, 82, 83, 102, 132] to metaheuristics [6, 8,
17, 18, 63, 65, 90, 105, 119]. Other notable methods include generalizations
of Voronoi diagrams [26, 87, 100, 117, 128], Markov chain Monte Carlo meth-
ods [2, 22, 34, 35, 36, 49], approximation algorithms [70], and fixed-parameter-
tractable algorithms [27]. For more, see the surveys of Ricca et al. [118] and
Goderbauer and Winandy [56].

Regarding MIP models, we have already seen the Labeling model and a
Hess-style model for cut edges, which both use assignment variables of the
form xij and (cut) edge variables of the form ye. Researchers have conducted
polyhedral studies for related problems in the y or (x, y) space of variables,
like the partition problem [23, 24, 28], the clique partitioning problem [37,
61, 62, 106], and the vertex capacitated graph partitioning problem [47, 48,
84, 126]. Ferreira et al. [47] propose a strong extended formulation for the
cut edges objective that we will discuss in Section 4. With a branch-and-cut
implementation, Ferreira et al. [48] solve an instance of the vertex capacitated
graph partitioning problem with 74 vertices and 469 edges using parameter
values (in our terms) of p = 1, k = 2, and U = ⌈n/2⌉.

In a completely different MIP approach, some have proposed to use a set
partitioning model, with a binary variable for each possible district. An early
example is the approach taken by Garfinkel and Nemhauser [54] which first
enumerates all satisfactory districts and then solves the resulting MIP. Ap-
plying their approach to county-level redistricting instances in the USA, they
observe that instances with n ≤ 30 are easy, while instances around n = 50

Political districting to minimize cut edges 9

are difficult, with West Virginia failing to solve in one hour. Decades later,
Mehrotra et al. [97] continue with a similar set partitioning model, but solve
it with a branch-and-price approach, generating suitable districts on-the-fly.
Using a compactness objective based on distances, they (approximately) solve
a county-level MIP for South Carolina, and then manually adjust some as-
signments for better population balance. Mehrotra and Trick [98] propose a
branch-and-price approach for clique partitioning and capacitated clustering
problems, testing them on instances with up to 36 and 61 nodes, respectively.
Observing the weak LP relaxation and symmetry inherent to the Labeling
model, Johnson et al. [74] propose a set partitioning model and column gener-
ation approach for a min-cut clustering problem. Here the task is to partition
the vertices into k subsets, with lower and upper size bounds on the subsets, so
as to minimize the weight of the cut edges. Recently, Gurnee and Shmoys [64]
develop a set partitioning and column generation approach for redistricting,
using stochastic hierarchical partitioning to generate many districting plans.

2.2 Contiguity constraints

Two general approaches for imposing contiguity in a MIP include flow con-
straints and cut constraints. When done right, these approaches lead to inte-
gral formulations for spanning trees [91], and for other special cases of Steiner
tree [57, 115]. This is convenient for problems in which the key decisions are
which edges to select.

However, in many problems, like districting, the key decisions are at the
vertex level. In this case, we turn to a (vertex) separator instead of an (edge)
cut. Figure 3 gives an example in which the vertex set C = {3, 7, 11, 15}
separates vertices a = 5 and b = 8 in the graph. Thus, if a and b were to
belong to the same (contiguous) district, then at least one vertex from C must
join them. This leads to a, b-separator inequalities of the form xaj + xbj ≤
1+

∑
c∈C xcj for the Labeling model, and xab ≤

∑
c∈C xcb for the Hess model.

The former have been used for the connected maximum k-cut problem [72],
and the latter have been used for other partitioning problems [104, 132]. It
should be noted that similar inequalities were first used for selecting a single
connected subset of vertices by several researchers [21, 50, 134]. We refer to
models based on these inequalities as CUT models.

Validi et al. [132] observe that the a, b-separator inequalities can be strength-
ened by exploiting the population bound U . Specifically, C need not fully sep-
arate a from b; it only needs to disrupt all short paths between them. As long
as all paths connecting a and b in G−C have population greater than U , then
the inequality xaj +xbj ≤ 1 +

∑
c∈C xcj (or xab ≤

∑
c∈C xcb) still applies. Fol-

lowing [120, 132], we call these inequalities length-U a, b-separator inequalities.
Figure 3 gives an example showing that the a, b-separator C = {3, 7, 11, 15}
can be reduced to the length-U a, b-separator C ′ = {7} when the graph is
supposed to be split into four equal-size districts. In their experiments, Va-
lidi et al. [132] observe that these strengthenings improve the performance on

10 Hamidreza Validi, Austin Buchanan

and b = 8 in the graph. Thus, if a and b were to belong to the same (contiguous)
district, then at least one vertex from C must join them. This leads to a, b-separator
inequalities of the form xaj + xbj  1 +

P
c2C xcj for the Labeling model, and

xab  P
c2C xcb for the Hess model. The former have been used for the connected

maximum k-cut problem [72], and the latter have been used for other partitioning
problems [104, 131]. It should be noted that similar inequalities were first used for
selecting a single connected subset of vertices by several researchers [21, 50, 133].
We refer to models based on these inequalities as CUT models.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 3: Illustration of a, b-separator (left) and length-U a, b-separator (right).

Validi et al. [131] observe that the a, b-separator inequalities can be strengthened
by exploiting the population bound U . Specifically, C need not fully separate a
from b; it only needs to disrupt all short paths between them. As long as all paths
connecting a and b in G � C have population greater than U , then the inequality
xaj + xbj  1 +

P
c2C xcj (or xab  P

c2C xcb) still applies. Following [120, 131],
we call these inequalities length-U a, b-separator inequalities. Figure 3 gives an
example showing that the a, b-separator C = {3, 7, 11, 15} can be reduced to the
length-U a, b-separator C 0 = {7} when the graph is supposed to be split into four
equal-size districts. In their experiments, Validi et al. [131] observe that these
strengthenings improve the performance on county-level instances of districting,
but not on the more granular tract-level instances where (minimal) a, b-separator
inequalities already are (minimal) length-U a, b-separator inequalities. We refer to
models based on length-U a, b-separator inequalities as LCUT models.

Definition 1. Let a, b 2 V and U 2 R. A vertex subset C ✓ V \ {a, b} is called
a length-U a, b-separator if distG�C,p(a, b) > U , where distG�C,p(a, b) is the vertex-
weighted distance from a to b in G � C with respect to vertex weights pi, i 2 V .

Since CUT and LCUT models generally have exponentially many constraints,
it is important to understand the associated separation problems if one wants to
use them. Assuming the graph is simple and planar, Validi et al. [131] show that
fractional separation for the CUT model (with Hess variables) can be performed in
time O(n2 log n) by exploiting planar min-cut algorithms [77, 85]; when the point
x⇤ to separate is integral, it takes time O(n2) using a procedure of Fischetti et
al. [50] as a subroutine. For the LCUT model, fractional separation is NP-hard, but
integer separation again takes time O(n2). Note that O(n2) is linear with respect
to the number of Hess variables.

10

Fig. 3 Illustration of a, b-separator (left) and length-U a, b-separator (right).

county-level instances of districting, but not on the more granular tract-level
instances where (minimal) a, b-separator inequalities already are (minimal)
length-U a, b-separator inequalities. We refer to models based on length-U
a, b-separator inequalities as LCUT models.

Definition 1 Let a, b ∈ V and U ∈ R. A vertex subset C ⊆ V \{a, b} is called
a length-U a, b-separator if the vertex-weighted distance (with respect to vertex
weights pi, i ∈ V) from a to b in G−C exceeds U , i.e., if distG−C,p(a, b) > U .

Since CUT and LCUT models generally have exponentially many con-
straints, it is important to understand the associated separation problems if
one wants to use them. Assuming the graph is simple and planar, Validi et
al. [132] show that fractional separation for the CUT model (with Hess vari-
ables) can be performed in time O(n2 log n) by exploiting planar min-cut algo-
rithms [77, 85]; when the point x∗ to separate is integral, it takes time O(n2)
using a procedure of Fischetti et al. [50] as a subroutine. For the LCUT model,
fractional separation is NP-hard, but integer separation takes time O(n2), see
[132]. Note that O(n2) is linear with respect to the number of Hess variables.

Now we turn to flow-based models, which are defined in terms of directed
graphs. Accordingly, starting from G = (V,E), replace each undirected edge
{i, j} ∈ E by two oppositely directed arcs (i, j) and (j, i) to get the directed
graph H = (V,A). The shorthands δ−(i) and δ+(i) refer to the subsets of arcs
from H that point in and out of vertex i, respectively.

The most popular flow formulation is attributed to Shirabe [124, 125], see
also [104, 132]. In it, k vertices are selected as district centers with the Hess
variables (xjj = 1); each district center generates flow that is then sent within
the district, and one unit is consumed at its other vertices. Using a flow variable
f j
uv for each vertex (commodity) j ∈ V and each arc (u, v) ∈ A, contiguity can

be enforced with:

f j(δ−(i)) − f j(δ+(i)) = xij ∀i ∈ V \ {j}, ∀j ∈ V (3a)

(SHIR) f j(δ−(i)) ≤ Mxij ∀i ∈ V \ {j}, ∀j ∈ V (3b)

f j(δ−(j)) = 0 ∀j ∈ V (3c)

f j
uv ≥ 0 ∀(u, v) ∈ A, ∀j ∈ V, (3d)

Political districting to minimize cut edges 11

where f j(A′) :=
∑

(u,v)∈A′ f j
uv for edge subsets A′. Constraints (3a) enforce

that if vertex i is assigned to another vertex j, then it should consume a unit of
j’s flow. The big-M constraints (3b) ensure that if i is not assigned to j, then
no flow of type j can enter it. Traditionally, researchers have set M = n − 1,
but we can use the smaller value

M = max
D⊂V

{|D| : p(D) ≤ U} − 1, (4)

which can be efficiently computed with a greedy algorithm. Constraints (3c)
enforce that vertex j does not receive flow of its own type.

Next from the literature is a single-commodity flow (SCF) formulation that
is written over the Labeling variables [72], cf. [101]. It has one flow variable
fij associated with each arc (i, j). There are also binary variables rij indicat-
ing whether vertex i ∈ V is the root of district j ∈ [k]. These root variables
are helpful for imposing contiguity and also for symmetry handling. The con-
straints are given by:

∑

i∈V

rij = 1 ∀j ∈ [k] (5a)

rij ≤ xij ∀i ∈ V, ∀j ∈ [k] (5b)

(SCF) f(δ−(i)) − f(δ+(i)) ≥ 1 −M
∑

j∈[k]

rij ∀i ∈ V (5c)

fij + fji ≤ M(1 − ye) ∀e = {i, j} ∈ E (5d)

fij ≥ 0 ∀(i, j) ∈ A (5e)

rij ∈ {0, 1} ∀i ∈ V, ∀j ∈ [k], (5f)

where Hojny et al. [72] mention setting M = n − k + 1. Because of our pop-
ulation balance constraints, we can use the stronger M defined in (4). Con-
straints (5a) force each district to have one root. Constraints (5b) state that
vertex i ∈ V cannot root a district j ∈ [k] to which it does not belong. Con-
straints (5c) force vertex i to consume flow if it is not a root. Constraints (5d)
disallow flow across cut edges.

Based on the categorization given in Table 2, one can conceive of three
other methods for imposing contiguity: Label-LCUT, Hess-SCF, and Label-
SHIR. The Label-LCUT model is straightforward to envisage, and the other
two models are detailed in Appendix A. We will test these models in our
experiments.

Table 2 Summarizing contiguity models used in previous work.

Contiguity Constraints
Base model CUT LCUT SCF SHIR
Hess [104, 132] [132] none known [104, 129, 132]
Labeling [72, 101] none known [72, 101] none known

12 Hamidreza Validi, Austin Buchanan

3 Test Instances and Computational Setup

As discussed in the introduction, the Hess and Labeling base models have
several undesirable properties (e.g., model symmetry, weak LP relaxation, un-
necessarily many variables). In the sections that follow, we propose a variety of
techniques to improve their scalability (e.g., heuristics, variable-fixing proce-
dures, symmetry handling, stronger extended formulations). As the techniques
are introduced, we evaluate their effectiveness on USA redistricting instances.

The data that we use originates from the 2010 Census1 and was then
processed by Daryl DeFord [33]. This includes the generation of the contiguity
graphs G = (V,E) which are not provided by the US Census Bureau directly
and have to be constructed from the GIS shapefiles. Our experiments use
the actual number of congressional districts (k) and populations (pi, i ∈ V).
For the population balance constraints, we impose a 1% deviation by setting
L = ⌈0.995p(V)/k⌉ and U = ⌊1.005p(V)/k⌋, which is typical [5, 68, 132].

We consider all county-level instances and some tract-level instances. As
shown in our previous work [132], not all of the 50 county-level instances are
interesting from a computational perspective. Seven of them are trivial, with
k = 1. Many others (like California or Texas) are overtly infeasible in the
sense that they have a county whose population exceeds U . What remains are
sixteen instances, four of which are infeasible when contiguity is imposed (and
this can be shown computationally in a few seconds by the techniques in our
previous paper [132]). This leaves twelve county-level instances (16 ≤ n ≤ 105)
that we will use in our experiments. We also consider ten tract-level instances,
specifically those states that are nontrivial (k > 1), not too big (n ≤ 750), and
connected. These instances are big enough to show the limits of our approach.

To illustrate our proposed techniques, we often apply them to New Mexico.
One reason is that New Mexico is relatively small, having n = 33 counties,
n = 499 census tracts, and k = 3 congressional districts. Also, New Mexico
has a square-like shape that is convenient for our figures.

All experiments use a Dell Precision Tower 7000 Series (7810) machine
running Windows 10 enterprise, x64, with Intel Xeon Processor E52630 v4 (10
cores, 2.2GHz, 3.1GHz Turbo, 2133MHz, 25MB, 85W) and 32 GB memory.
Our MIP solver is Gurobi 9.1. Our code is written in Python to easily interface
with GerryChain (for our heuristic) and GeoPandas (for drawing maps) and
is available at https://github.com/hamidrezavalidi/Political-Distric

ting-to-Minimize-Cut-Edges [131].

4 Extended Objective

Recall the cut edge constraints (1b) and (2b), which take the form xuj−xvj ≤
ye for edges e = {u, v} ∈ E and districts j. In this section, we illustrate the

1 The 2020 Census data that is used for redistricting was not available at the time of
writing, and is not expected to be released until August 2021.

https://github.com/hamidrezavalidi/Political-Districting-to-Minimize-Cut-Edges
https://github.com/hamidrezavalidi/Political-Districting-to-Minimize-Cut-Edges

Political districting to minimize cut edges 13

To illustrate our proposed techniques, we will often apply them to New Mexico.
One reason is that New Mexico is relatively small, having n = 33 counties, n = 499
census tracts, and k = 3 congressional districts after the 2010 Census. Another
reason is that New Mexico has a square-like shape that is convenient for our figures.

All experiments use a Dell Precision Tower 7000 Series (7810) machine running
Windows 10 enterprise, x64, with Intel Xeon Processor E52630 v4 (10 cores, 2.2GHz,
3.1GHz Turbo, 2133MHz, 25MB, 85W) and 32 GB memory. Our MIP solver is
Gurobi 9.1. Our code is written in Python to easily interface with GerryChain (for
our heuristic) and GeoPandas (for drawing maps) and is available at https://gith
ub.com/hamidrezavalidi/Political-Districting-to-Minimize-Cut-Edges.

4 Extended Objective

Recall the cut edge constraints (1b) and (2b), which take the form xuj � xvj  ye

for edges e = {u, v} 2 E and districts j. In this section, we illustrate the weakness
of these constraints and discuss a class of valid inequalities that subsumes them.
While there are exponentially many of these inequalities, we find a small extended
formulation for them that is equally as strong. To illustrate, consider the example
given in Figure 4 in which the task is to split the 4 vertices of the graph into 2
districts of equal size (k = L = U = 2 and p = 1).

2 x̂21 = 0.5
x̂22 = 0.5

4x̂43 = 0.5
x̂44 = 0.5 3 x̂33 = 0.5

x̂34 = 0.5

1x̂11 = 0.5
x̂12 = 0.5

ŷ{2,3} = 0.5

ŷ{1,2} = 0

ŷ{1,4} = 0.5

ŷ{3,4} = 0

Figure 4: A fractional point (x̂, ŷ) that is LP feasible for the Hess model (2).

The point (x̂, ŷ) depicted in the figure is LP feasible for the Hess base model (2),
and x̂ also satisfies contiguity constraints. In fact, x̂ = 0.5x̄ + 0.5x̃ is a convex
combination of x-feasible solutions x̄ and x̃ in which x̄11 = x̄21 = x̄34 = x̄44 = 1
and x̃12 = x̃22 = x̃33 = x̃43 = 1. However, ŷ does not reflect this. Specifically,
observe that edge {1, 4} is only partially cut (ŷ{1,4} = 1/2), despite its endpoints 1
and 4 being assigned to completely di↵erent districts. In response, we could apply
the following valid inequality that (x̂, ŷ) violates.

(x43 + x44) � (x13 + x14)  y{1,4}.

This inequality states that if vertex 4 is assigned to a vertex from the set {3, 4} but
vertex 1 is not, then the edge between them is cut. In fact, there is nothing special
about the set {3, 4}, and the idea generalizes to arbitrary vertex subsets and edges.

13

Fig. 4 A fractional point (x̂, ŷ) that is LP feasible for the Hess model (2).

weakness of these constraints and discuss a class of valid inequalities that sub-
sumes them. While there are exponentially many of these inequalities, we find
a small extended formulation for them that is equally as strong. To illustrate,
consider the example given in Figure 4 in which the task is to split the 4 ver-
tices of the graph into 2 districts of equal size (k = L = U = 2 and p = 1).

The point (x̂, ŷ) depicted in the figure is LP feasible for the Hess base
model (2), and x̂ also satisfies contiguity constraints. In fact, x̂ = 0.5x̄ + 0.5x̃
is a convex combination of x-feasible solutions x̄ and x̃ in which x̄11 = x̄21 =
x̄34 = x̄44 = 1 and x̃12 = x̃22 = x̃33 = x̃43 = 1. However, ŷ does not reflect
this. Specifically, observe that edge {1, 4} is only partially cut (ŷ{1,4} = 1/2),
despite its endpoints 1 and 4 being assigned to completely different districts.
In response, we could apply the following valid inequality that (x̂, ŷ) violates.

(x43 + x44) − (x13 + x14) ≤ y{1,4}.

This inequality states that if vertex 4 is assigned to a vertex from the set
{3, 4} but vertex 1 is not, then the edge between them is cut. In fact, there
is nothing special about the set {3, 4}, and the idea generalizes to arbitrary
vertex subsets and edges.

Lemma 1 (cf. Ferreira et al. [47]) If S ⊆ V is a subset of vertices and
e = {u, v} ∈ E is an edge, then the following inequality is valid for the Hess
base model (2).

∑

j∈S

(xuj − xvj) ≤ ye (6)

Proof Suppose that (x̂, ŷ) satisfies the Hess base model (2) and is thus binary.
Without loss of generality, suppose that u is assigned to s (x̂us = 1) and that
v is assigned to t (x̂vt = 1). If s ̸= t, then ŷe = 1 by (2b), so

∑

j∈S

(x̂uj − x̂vj) ≤
∑

j∈S

x̂uj ≤ 1 = ŷe.

Otherwise, s = t, and
∑

j∈S(x̂uj − x̂vj) = 0 ≤ ŷe. ⊓⊔

14 Hamidreza Validi, Austin Buchanan

Lemma 1 applies to the Labeling model under the revised assumption
that S ⊆ [k], as observed by Ferreira et al. [47]. Observe that the cut edge
inequalities (1b) and (2b) are cases of the strengthened version where |S| = 1.

Although these inequalities (6) can strengthen the LP relaxation, we do
not use them. The reason is that there is a small extended formulation for
them that is just as strong, and using it is easier than implementing a separa-
tion callback. The extended formulation is based on new variables zje that are
defined for every edge e = {u, v} ∈ E, with u < v, and district center j ∈ V .
They indicate whether edge e is cut because u is assigned to j but v is not. For
the Hess model, we use the following constraints instead of constraints (2b).

xuj − xvj ≤ zje ∀e = {u, v} ∈ E, u < v,∀j ∈ V (7a)

ye =
∑

j∈V

zje ∀e ∈ E (7b)

zje ≥ 0 ∀e ∈ E, ∀j ∈ V. (7c)

Essentially the same model applies in the Labeling case by changing V to [k].
Similarly, the theorem below also applies to Labeling, see Ferreira et al. [47].

Theorem 1 (cf. Ferreira et al. [47]) The strengthened cut edge inequali-
ties (6) and the extended formulation (7) are equally strong. They are at least
as strong as the cut edge constraints (2b).

Proof Denote by P the set of (x, y) that satisfy the strengthened cut edge
inequalities (6). Denote by Q the set of (x, y, z) that satisfy the extended
formulation (7). We show that P = projx,y Q.

(⊆) Suppose that (x̂, ŷ) belongs to P . We construct ẑ such that (x̂, ŷ, ẑ)
belongs to Q. For each edge e = {u, v} ∈ E, with u < v, define

de := max
S⊆V




∑

j∈S

(x̂uj − x̂vj)



 ,

and observe that a solution to this problem is given by

Se := {j ∈ V | x̂uj − x̂vj > 0}.

Also note that he := ŷe − de is nonnegative by assumption that (x̂, ŷ) satisfies
the strengthened cut edge inequalities (6). Finally, for each vertex j ∈ V , let

ẑje :=

{
(x̂uj − x̂vj) + he/n if j ∈ Se,
he/n if j ∈ V \ Se.

By this definition, each ẑje is nonnegative and thus satisfies constraints (7c).
Next, we show that (x̂, ŷ, ẑ) satisfies constraints (7a). If j ∈ Se, then

x̂uj − x̂vj ≤ (x̂uj − x̂vj) + he/n = ẑje .

Political districting to minimize cut edges 15

Otherwise, if j ∈ V \ Se, then

x̂uj − x̂vj ≤ 0 ≤ he/n = ẑje .

Last, to show that constraints (7b) are satisfied, see that

ŷe = he + de =
∑

j∈V

(he/n) +
∑

j∈Se

(x̂uj − x̂vj)

=
∑

j∈V \Se

(he/n) +
∑

j∈Se

((x̂uj − x̂vj) + he/n)

=
∑

j∈V \Se

ẑje +
∑

j∈Se

ẑje =
∑

j∈V

ẑje .

(⊇) Suppose that (x̄, ȳ, z̄) belongs to Q. We show that (x̄, ȳ) belongs to P ,
i.e., that (x̄, ȳ) satisfies the strengthened cut edge inequalities (6). For this,
consider an edge e = {u, v} ∈ E, with u < v, and vertex subset S ⊆ V , and

∑

j∈S

(x̄uj − x̄vj) ≤
∑

j∈S

z̄je ≤
∑

j∈V

z̄je = ȳe,

where the first inequality holds by constraints (7a), the second inequality holds
by constraints (7c), and the equality holds by constraints (7b). ⊓⊔

Later, in Subsection 7.1, we will see that this extended objective can be
quite helpful in practice, leading to substantial improvements in the root LP
bound and in the number of branch-and-bound nodes. In our experience, it
also outperforms a cutting-plane implementation of inequalities (6).

5 Heuristic

In preliminary experiments, we observed that the MIP solver sometimes had
trouble finding a good initial solution. We also observed that, as soon as a
good solution was found, the MIP solver could often prove optimality quite
quickly. With this in mind, we sought to use a heuristic to warm-start the solve
process. Rather than reinvent the wheel, we use an existing codebase called
GerryChain v0.2.12 [99]. GerryChain is based on a Markov chain Monte Carlo
framework, repeatedly moving from one feasible solution to a (randomly cho-
sen) neighboring feasible solution, much like local search. A difference is that
GerryChain was primarily intended to generate large collections of redistrict-
ing plans, with no particular objective function in mind. In the intended use,
a proposed or enacted plan can be compared to the resulting “distribution” of
plans to see whether it is a (gerrymandered) outlier. We find that GerryChain
works well as a heuristic for minimizing the number of cut edges.

GerryChain employs two search neighborhoods, referred to as flip and re-
combination. In flip, a vertex on the boundary between two districts can be
moved to the other district. Thus, only small changes can be made with the flip

16 Hamidreza Validi, Austin Buchanan

neighborhood. Meanwhile, recombination allows for much larger changes [35].
In it, two (or more) adjacent districts are temporarily merged into one dis-
trict, a random spanning tree is constructed within them, and some edges are
removed from the spanning tree to split it into the appropriate number of
districts. This process is repeated if the recombination move gives an infeasi-
ble solution. In our experiments, we follow the suggested practice of running
GerryChain for 10,000 iterations, as this is empirically when the Markov chain
appears to reach steady state [34, 35].

Figure 5 depicts the best solutions found for New Mexico within 10,000
iterations. The districting plan on the left gives a county-level solution that
cuts 17 edges, which turns out to be optimal. On the right is a tract-level
solution that cuts 46 edges, which is not far from the optimal objective 43.

found, the MIP solver could often prove optimality quite quickly. With this in mind,
we sought to use a heuristic to warm-start the solve process. Rather than reinvent
the wheel, we use an existing codebase called GerryChain v0.2.12 [99]. GerryChain
is based on a Markov chain Monte Carlo (MCMC) framework, repeatedly moving
from one feasible solution to a (randomly chosen) neighboring feasible solution,
much like local search. A di↵erence is that GerryChain was primarily intended to
generate large collections of redistricting plans, with no particular objective function
in mind. In the intended use, a proposed (or enacted) plan can be compared to
the resulting “distribution” of plans to see whether it is a (gerrymandered) outlier.
Nevertheless, we find that GerryChain works reasonably well as a heuristic for
minimizing the number of cut edges.

GerryChain employs two search neighborhoods, referred to as flip and recombi-
nation. In flip, a vertex on the boundary between two districts can be moved to the
other district. Thus, only small changes can be made with the flip neighborhood.
Meanwhile, recombination allows for much larger changes [35]. In it, two (or more)
adjacent districts are temporarily merged into one district, a random spanning tree
is constructed within them, and some edges are removed from the spanning tree
to split it into the appropriate number of districts. This process is repeated if the
recombination move gives an infeasible solution. In our experiments, we follow the
suggested practice of running GerryChain for 10,000 iterations, as this is empirically
when the Markov chain appears to reach steady state [34, 35].

Figure 5 depicts the best solutions found for New Mexico within 10,000 iter-
ations. The districting plan on the left gives a county-level solution that cuts 17
edges, which turns out to be optimal. On the right is a tract-level solution that
cuts 46 edges, which is reasonably close to the optimal objective 43.

Figure 5: Heuristic county-level and tract-level solutions for New Mexico.

In Table 3, we provide more details on our experience with GerryChain. Specif-
ically, we report the heuristic’s objective value as the number of iterations increases
from 100 to 1,000 to 10,000. For comparison, we also report the optimal objective
value. Lastly, we report the time used by the heuristic.

16

Fig. 5 Heuristic county-level and tract-level solutions for New Mexico.

In Table 3, we provide more details on our experience with GerryChain.
Specifically, we report the heuristic’s objective value as the number of itera-
tions increases from 100 to 1,000 to 10,000. For comparison, we also report
the optimal objective value. Lastly, we report the time used by the heuristic.

We observe that the objective values tend to improve as the number of iter-
ations increases, although this is not guaranteed because of the random nature
of GerryChain (e.g., see AL). We see that GerryChain is able to find optimal
solutions for most of the county-level instances within 10,000 iterations. Ex-
ceptions are Maine and Louisiana. In fact, in our experiments, GerryChain
stalls on Maine and does not terminate. Investigating this issue, we find that
Maine has only one feasible districting plan at the county level, leaving no
room for flip and recombination moves. Meanwhile, on Louisiana, GerryChain
was simply unable to find a feasible starting solution, even though one exists.
Such behavior is bound to happen in some cases given that GerryChain is
not an exact method. This provides additional motivation for the exact pro-
cedures proposed in this paper. On county-level instances, the running times
are reasonable, taking seconds when the number of iterations is 100, and tak-

Political districting to minimize cut edges 17

Table 3 Experimental results using GerryChain as a heuristic. Results are provided for 100
and 1,000 and 10,000 iterations on county-level and tract-level instances.

objective value heuristic time
state n k 100 1,000 10,000 opt 100 1,000 10,000
ME 16 2 - - - 16 - - -
NM 33 3 17 17 17 17 1.38 14.89 148.00
ID 44 2 10 10 10 10 5.14 39.50 404.51
WV 55 3 23 23 23 23 6.16 79.31 831.17
LA 64 6 - - - 49 - - -
AL 67 7 55 58 55 55 5.30 20.69 281.53
AR 75 4 33 33 33 33 3.20 41.69 402.48
OK 77 5 46 41 40 40 4.30 47.27 415.23
MS 82 4 34 34 34 34 5.39 46.46 485.37
NE 93 3 19 19 19 19 3.02 26.66 279.04
IA 99 4 36 33 33 33 3.81 63.70 577.47
KS 105 4 40 32 32 32 16.45 124.96 1,294.27
NH 295 2 30 27 26 26 13.31 141.68 1,319.08
ID 298 2 17 17 17 17 35.70 286.54 3,249.60
ME 358 2 22 21 20 20 18.86 125.51 1,471.17
WV 484 3 59 48 44 43 26.80 232.34 2,310.90
NM 499 3 48 48 46 43 28.70 245.92 2,481.29
NE 532 3 55 51 47 44 20.92 190.51 1,802.43
UT 588 4 110 107 97 - 21.56 221.17 2,310.29
MS 664 4 82 72 69 - 20.86 194.32 2,035.84
AR 686 4 88 85 79 - 21.55 197.66 1,903.86
NV 687 4 105 95 89 - 26.67 224.15 2,195.91

ing minutes when the number of iterations is 10,000. If desired, these times
could be improved by implementing GerryChain in a different programming
language (e.g., Julia2 or C++); however, this is outside our scope.

On the tract-level instances, the performance of GerryChain is similar,
but slightly worse. On several states, GerryChain runs for 10,000 iterations
without arriving at an optimal solution (e.g., for WV, NM, NE), although
they are close. Better solutions could be found with more iterations, but we
chose not to given that GerryChain was already taking roughly 30 minutes to
complete 10,000 iterations.

6 Symmetry Handling and Variable Fixing for Hess Model

In this section, we seek to improve the performance of the Hess model, primar-
ily by reducing the size of the MIP by safely fixing variables to zero. First, we
propose diagonal-fixing, which works as a symmetry-breaking technique and
also as a way to cut its variables nearly in half. Next, we propose L-fixing,
which exploits the population lower bound L to fix some center variables xjj

to zero, which also fixes the associated variables xij for i ∈ V in the process.
Then, we propose U -fixing, which exploits the population upper bound U to
fix some variables xij to zero when vertices i and j are “far apart” from each

2 As we were writing this paper, MGGG began implementing GerryChain in Julia [127].

18 Hamidreza Validi, Austin Buchanan

other and impossible to belong to the same district. Last, we propose Z-fixing,
in which we safely fix some of the variables zje to zero. While these procedures
are primarily intended for the Hess base model (which needs a size reduction
the most), they can be extended to the Labeling model (see Appendix C).

These variable fixing procedures can be quite powerful, as Table 5 illus-
trates for New Mexico (NM). Since NM has 33 counties, the Hess base model
uses (33)2 = 1, 089 variables of the type xij . Of them, 528 are fixed to zero by
diagonal-fixing, 406 by L-fixing, and 28 by U -fixing, as reported in Table 4.
In total, the number of x variables drops from 1, 089 to 127, a reduction of
88%. Additionally, Bernalillo County and Doña Ana County, which cannot
be assigned to other counties, must root their own districts (xjj = 1) by the
assignment constraints (2c). Further, 88% of the z variables can be fixed to
zero. The percentage of variables that are fixed by our techniques increases to
95% or more on the tract-level instances.

Table 4 Experiments with Hess variable fixing and time limit (TL) of 60 seconds. We
report the size of set B obtained via model (12), and MIP solve time in seconds. Next are
the number of x variables fixed via diagonal-fixing (DFix), L-fixing (LFix), and U -fixing
(UFix), followed by the total percentage of x variables fixed (%X) rounded to the nearest
percent. Last is the percentage of z variables fixed (%Z).

model (12) How many variables are fixed?
state n k |B| time DFix LFix UFix %X %Z
ME 16 2 13 0.03 120 91 0 82 83
NM 33 3 28 0.17 528 406 28 88 88
ID 44 2 41 0.05 946 861 0 93 93
WV 55 3 48 3.62 1,485 1,176 20 89 89
LA 64 6 53 30.68 2,016 1,431 58 86 85
AL 67 7 52 TL 2,211 1,378 110 82 83
AR 75 4 64 24.01 2,775 2,080 28 87 87
OK 77 5 64 20.83 2,926 2,080 101 86 86
MS 82 4 69 TL 3,321 2,415 20 86 86
NE 93 3 86 2.56 4,278 3,741 5 93 93
IA 99 4 85 TL 4,851 3,655 52 87 87
KS 105 4 95 12.55 5,460 4,560 11 91 91
NH 295 2 283 7.61 43,365 40,186 0 96 96
ID 298 2 291 2.48 44,253 42,486 138 98 98
ME 358 2 349 3.19 63,903 61,075 0 98 98
WV 484 3 467 TL 116,886 109,278 1,195 97 97
NM 499 3 485 TL 124,251 117,855 184 97 97
NE 532 3 513 TL 141,246 131,841 375 97 97
UT 588 4 556 TL 172,578 154,846 918 95 95
MS 664 4 634 TL 220,116 201,295 1,456 96 96
AR 686 4 653 TL 234,955 213,531 1,982 96 96
NV 687 4 655 TL 235,641 214,840 707 96 96

Table 5 Variable fixings for New Mexico at the county level. Here, D, L, and U denote diagonal-fixing, L-fixing, and U -fixing, respectively.

County Population # 19 20 27 23 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 21 22 24 25 26 28 29 30 31 32 33
Bernalillo 662,564 19 D
Doña Ana 209,233 20 U D
Santa Fe 144,170 27 U D
Rio Arriba 40,246 23 U D
Cibola 27,213 15 D
Harding 695 1 U L D
Sierra 11,988 2 U L L D
Lea 64,727 3 U L L L D
Guadalupe 4,687 4 L L L L D
Torrance 16,383 5 L L L L L D
Grant 29,514 6 U L L L L L L D
Otero 63,797 7 U L L L L L L L D
San Juan 130,044 8 U L L L L L L L L D
Roosevelt 19,846 9 U L L L L L L L L L D D D D D D D D D D D D D D D D D D D
Curry 48,376 10 U L L L L L L L L L L D D D D D D D D D D D D D D D D D D
Taos 32,937 11 U L L L L L L L L L L L D D D D D D D D D D D D D D D D D
Hidalgo 4,894 12 U L L L L L L L L L L L L D D D D D D D D D D D D D D D D
Eddy 53,829 13 U L L L L L L L L L L L L L D D D D D D D D D D D D D D D
De Baca 2,022 14 L L L L L L L L L L L L L L D D D D D D D D D D D D D D
Quay 9,041 16 U L L L L L L L L L L L L L L L D D D D D D D D D D D D D
Colfax 13,750 17 U L L L L L L L L L L L L L L L L D D D D D D D D D D D D
Los Alamos 17,950 18 U L L L L L L L L L L L L L L L L L D D D D D D D D D D D
Chaves 65,645 21 U L L L L L L L L L L L L L L L L L L D D D D D D D D D D
Valencia 76,569 22 U L L L L L L L L L L L L L L L L L L L D D D D D D D D D
San Miguel 29,393 24 U L D D D D D D D D
Catron 3,725 25 U L D D D D D D D
Sandoval 131,561 26 U L D D D D D D
Socorro 17,866 28 U L D D D D D
Lincoln 20,497 29 U L D D D D
McKinley 71,492 30 U L D D D
Luna 25,095 31 U L D D
Mora 4,881 32 U L D
Union 4,549 33 U L

20 Hamidreza Validi, Austin Buchanan

6.1 Symmetry handling via diagonal-fixing

As discussed in the introduction, the Hess base model has considerable model
symmetry, allowing for |D1||D2| · · · |Dk| different representations of the same
districting plan (D1, D2, . . . , Dk). This symmetry can be broken by picking
an ordering of the vertices (v1, v2, . . . , vn) and then fixing xij = 0 whenever
vertex i comes before vertex j in the ordering [20]. In other words, fix

xij = 0 if pos(i) < pos(j), (8)

where pos(i) is the position of vertex i in the ordering (v1, v2, . . . , vn), i.e., if
i = vq then pos(i) = q. This forces a canonical “center” for each district: its
earliest vertex in the ordering. We call this diagonal-fixing because all entries of
the matrix x that lie above the main diagonal are fixed to zero (after the rows
and columns of x have been rearranged based on the ordering). Thus, nearly
half of the Hess variables will be fixed, specifically (n2 − n)/2, see Table 5.

In the next subsection, we will see that the ordering can dramatically
impact the number of variables that can be fixed through other means (e.g.,
L-fixing). So, we will seek to choose the ordering intelligently.

6.2 L-fixing

After diagonal-fixing, only certain vertices can be assigned to vertex j ∈ V ,
specifically only those vertices i that occur later in the ordering:

Vj = {i ∈ V | pos(i) ≥ pos(j)}. (9)

Often, this set Vj is so small (in population), that a feasible district cannot be
built from it. In this case where p(Vj) < L, we can fix xjj = 0. Further, by the
coupling inequalities xij ≤ xjj , we can fix xij = 0 for all i ∈ Vj . If seeking to
maximize the number of variables fixed in this way, then the ordering should
be constructed by sorting the vertices from largest to smallest population.

However, if we exploit the fact that districts should be contiguous, we can
do more. Not all vertices of Vj can be assigned to j; for example, vertices from
other (connected) components of G[Vj] cannot. This allows us to refine Vj to
the subset of vertices Sj that can be reached by a path from j in G[Vj]:

Sj = {i ∈ Vj | there is an i, j-path in G[Vj]}. (10)

Like before, if p(Sj) < L, then we can fix xjj = 0, or more generally xij = 0
for all i ∈ Vj . We refer to this as L-fixing. As Table 5 illustrates, L-fixing can
be quite powerful, provided that a good ordering is used. Fortunately, we have
Lemma 2 to aid us in finding a good ordering.

Lemma 2 Suppose that B is a subset of vertices and that every component
of G[B] has population less than L. If B is placed at the back of the ordering
(v1, v2, . . . , vn), then every vertex j from B will be L-fixed.

Political districting to minimize cut edges 21

Proof Let G[Bj] be the component of G[B] that contains j. Observe that
p(Bj) < L by assumption that components of G[B] have population less than
L. Then, since Sj ⊆ Bj , we have p(Sj) ≤ p(Bj) < L, so j is L-fixed. ⊓⊔

To illustrate Lemma 2, consider the 5x5 grid depicted in Figure 6. Here the
task is to split it into 5 districts of equal size. On left, we show a maximum
independent set B with 13 vertices, which would lead to 13 L-fixings of the
form xjj = 0, or

(
13+1

2

)
= 91 L-fixings of the form xij = 0. Note that planar

graphs have independent sets of size at least n/4 by the four color theorem [7].
So, planar districting instances (that satisfy the mild condition pi < L for all
i ∈ V) allow for at least n/4 L-fixings of the form xjj = 0.

Proof. Let G[Bj] be the component of G[B] that contains j. Observe that p(Bj) < L
by assumption that components of G[B] have population less than L. Then, since
Sj ✓ Bj , we have p(Sj)  p(Bj) < L, so j is L-fixed.

To illustrate Lemma 2, consider the 5x5 grid instance depicted in Figure 6.
Here the task is to split the graph into 5 districts of equal size. On left, we show
a maximum independent set B with 13 vertices, which would lead to 13 L-fixings
of the form xjj = 0, or

�
13+1

2

�
= 91 L-fixings of the form xij = 0. Note that

planar graphs always admit an independent set of size at least n/4 by the four color
theorem [7]. So, planar districting instances (that satisfy the mild condition pi < L
for all i 2 V) allow for at least n/4 L-fixings of the form xjj = 0.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure 6: Vertices B that could be L-fixed if at back of ordering, when L = 5.

However, we can often do better, as the right side of Figure 6 illustrates. It
shows a maximum cardinality subset of vertices B that satisfies the conditions of
Lemma 2. If these vertices are placed at the end of the ordering, this results in 17
L-fixings of the form xjj = 0, or

�
17+1

2

�
= 153 L-fixings of the form xij = 0. It turns

out that putting a maximum such B at the back of the ordering gives a maximum
number of L-fixings, not just for Figure 6, but generally, as Theorem 2 shows.

Theorem 2. If a solution B to the following problem is placed at the back of the
ordering, this maximizes the number of L-fixings.

max
B✓V

{|B| : every component of G[B] has population less than L}. (11)

Proof. Suppose that B solves problem (11) and let (v01, v
0
2, . . . , v

0
n) be an ordering

that places B at the back. By Lemma 2, this gives |B| L-fixings of the type xjj = 0.
Now, consider an arbitrary ordering (v1, v2, . . . , vn), define Vj and Sj accordingly,
and denote by F = {j 2 V | p(Sj) < L} as the subset of L-fixed vertices. See
that F is a feasible solution to problem (11). (If F were infeasible, this means that
G[F] has a component G[V 0] with p(V 0) � L and its earliest vertex v 2 V 0 in the
ordering has V 0 ✓ Sv, giving the contradiction L  p(V 0)  p(Sv) < L.) So, since
F is feasible for problem (11) while B is feasible and maximum, we have |F |  |B|.
Thus, the ordering (v01, v

0
2, . . . , v

0
n) with B at back has at least as many L-fixings as

the arbitrary ordering (v1, v2, . . . , vn).

22

Fig. 6 Vertices B that could be L-fixed if at back of ordering, when L = 5.

However, we can often do better, as the right side of Figure 6 illustrates. It
shows a maximum cardinality subset of vertices B that satisfies the conditions
of Lemma 2. If these vertices are placed at the end of the ordering, this results
in 17 L-fixings of the form xjj = 0, or

(
17+1

2

)
= 153 L-fixings of the form

xij = 0. It turns out that putting a maximum such B at the back of the
ordering gives a maximum number of L-fixings, not just for Figure 6, but
generally, as Theorem 2 shows.

Theorem 2 If a solution B to the following problem is placed at the back of
the ordering, this maximizes the number of L-fixings.

max
B⊆V

{|B| : every component of G[B] has population less than L}. (11)

Proof Suppose that B solves problem (11) and let (v′1, v
′
2, . . . , v

′
n) be an or-

dering that places B at the back. By Lemma 2, this gives |B| L-fixings of the
type xjj = 0. Now, consider an arbitrary ordering (v1, v2, . . . , vn), define Vj

and Sj accordingly, and denote by

F = {j ∈ V | p(Sj) < L}

as the subset of L-fixed vertices. See that F is a feasible solution to prob-
lem (11). (If F were infeasible, this means that G[F] has a component G[V ′]

22 Hamidreza Validi, Austin Buchanan

with p(V ′) ≥ L and its earliest vertex v ∈ V ′ in the ordering has V ′ ⊆ Sv,
giving the contradiction L ≤ p(V ′) ≤ p(Sv) < L.) So, since F is feasible for
problem (11) while B is feasible and maximum, we have |F | ≤ |B|. Thus, the
ordering (v′1, v

′
2, . . . , v

′
n) with B at the back has at least as many L-fixings as

the arbitrary ordering (v1, v2, . . . , vn). ⊓⊔

We remark that the converse of Theorem 2 does not hold. For example,
for the path graph 1-2-3-4-5 and L = 2, the ordering (4, 5, 2, 1, 3) maximizes
the number of L-fixings but does not place the unique optimal solution B =
{1, 3, 5} to problem (11) at the back.

6.3 An IP to solve the max B problem (11)

Since we would like to maximize the number of L-fixings, Theorem 2 tells us
that we should seek orderings that place a solution B to problem (11) at the
back. While problem (11) is NP-hard even on planar graphs [89, Corollary 5],
it still may be worth solving if this leads to a commensurate speedup for the
cut edge districting problem. Related interdiction problems have been studied
in the literature, e.g., in which the task is to delete a minimum (weight) subset
of vertices so that each (of the at most k) remaining component(s) has at most
some number of vertices [12, 14, 16, 29, 52, 53, 86, 107, 123, 137].

To solve the maximum B problem (11), we “just MIP it” [51]. For every
vertex i ∈ V , introduce a binary variable bi that equals one if vertex i is
selected in B. We also have binary variables xij that equal one when vertex
i ∈ V is assigned to “bin” j ∈ [q]. Later, we decide how many bins are needed.

max
∑

i∈V

bi (12a)

∑

j∈[q]

xij = bi ∀i ∈ V (12b)

∑

i∈V

pixij ≤ L− 1 ∀j ∈ [q] (12c)

xuj + bv ≤ 1 + xvj ∀{u, v} ∈ E, ∀j ∈ [q] (12d)

x ∈ {0, 1}n×q, b ∈ {0, 1}n. (12e)

The objective (12a) maximizes the number of vertices in B. Constraints (12b)
ensure that vertex i is selected in B if and only if it is assigned to one of the
bins j ∈ [q]. Each of these bins has population less than L by constraints (12c).
By constraints (12d), the bins do not touch each other. More specifically, they
impose that if vertex u is assigned to bin j and its neighbor v is selected in
B, then v must also be assigned to bin j. Thus, every component of G[B] will
have population less than L, as desired. In our implementation, we impose
constraints (12d) for both orientations of edge {u, v} ∈ E. Observe that this
model has O(qn) variables, constraints, and nonzeros for simple planar graphs,

Political districting to minimize cut edges 23

but that projecting out the bi variables would increase the number of nonzeros
in constraints (12d) to Ω(q2n).

Below, we prove that q = 2k bins suffice for our instances. This holds, for
example, when k ≤ 99, L ≥ 0.995p̄, and p̄ ≥ 39, 800, where p̄ = p(V)/k is the
ideal district population. For reference, California, which is the most populous
state, had k = 53 congressional districts after the 2010 Census. Meanwhile,
the state with the smallest ideal district population p̄ was Rhode Island, which
had p̄ = 527, 623.50.

Proposition 1 For our instances, q = 2k bins suffice. Generally, this holds
if k ≤ 99 and ideal district population p̄ satisfies L ≥ 0.995p̄ and p̄ ≥ 39, 800.

Proof Consider a feasible solution to problem (11) given by B ⊆ V and let b∗

be its characteristic vector. Let G[B1], G[B2], . . . , G[Bt] be the components of
G[B]. By feasibility of B, each component G[Bj] has population less than L.
Pack these vertex subsets B1, B2, . . . , Bt into bins of capacity L− 1 using the
first-fit algorithm, giving new subsets B1, B2, . . . , Bq. This bin packing admits
an associated x-representation x∗ for which (x∗, b∗) satisfies the constraints of
model (12) and has objective |B|.

It remains to show that q ≤ 2k. Consider arbitrary bins Bi and Bj , with
i < j, from our bin packing. By the first-fit algorithm, greater than half of
their combined capacity 2(L− 1) is used, since otherwise the algorithm would
have instead placed the items from Bj into Bi (or another earlier bin). Thus,
letting Bq+1 ≡ B1, we have

kp̄ = p(V) ≥
q∑

i=1

p(Bi) =
1

2

q∑

i=1

(p(Bi) + p(Bi+1)) >
1

2

q∑

i=1

(L− 1) =
q(L− 1)

2
,

which implies that q < 2kp̄/(L−1). Then, by our assumption that L ≥ 0.995p̄,

q <
2kp̄

L− 1
≤ 2kp̄

0.995p̄− 1
=

2k(0.995p̄− 1 + 0.005p̄ + 1)

0.995p̄− 1
= 2k +

2k(0.005p̄ + 1)

0.995p̄− 1
.

Then, q < 2k + 1 holds, because the right-most term above is at most one by

2k(0.005p̄ + 1)

0.995p̄− 1
≤ 198

(
0.005p̄ + 1

0.995p̄− 1

)
≤ 198

(
1

198

)
= 1,

where the inequalities hold by k ≤ 99 and p̄ ≥ 39, 800, respectively. ⊓⊔

The 2k bin bound from Proposition 1 is best-possible under our assump-
tions. For example, consider a star graph K1,4 whose hub vertex 1 has p1 = 1
and each leaf l ∈ {2, 3, 4, 5} has pl = M sufficiently large, giving p(V) =
4M + 1. Let k = 2, L = 2M , and U = 2M + 1. The unique solution to prob-
lem (11) is B = {2, 3, 4, 5}, requiring 4 = 2k bins of capacity L− 1 = 2M − 1.

While setting q = 2k is “safe” for solving the maximum B problem with
model (12), it might be preferable in practice to use a smaller “unsafe” value,
like q = k. This may compromise exactness (as the star example shows), but it

24 Hamidreza Validi, Austin Buchanan

yields a smaller MIP that can be more easily handled. In Table 11 of Appendix
B, we provide results for both q = k and q = 2k, under one-minute and one-
hour time-limits. As the results show, to get a practically large set B, we can
set q = k and use a one-minute time-limit. This is inexact, e.g., 291 versus 292
for ID at the tract level, but this is fine for L-fixing purposes.

Another way we help the MIP solver find good solutions to model (12) is to
give it a partial warm start solution. The idea is as follows. Suppose we have
an initial districting plan D1, D2, . . . , Dk obtained via, say, GerryChain. This
plan gives a feasible solution x∗ to the Labeling model. In it, each vertex i ∈ V
will be assigned to one district j ∈ [k]. In our partial warm start, we suggest
xit = 0 for all t ̸= j. After this suggestion, we have xij = bi and model (12)
reduces to the following.

max
∑

i∈V

bi (13a)

∑

i∈Dj

pibi ≤ L− 1 ∀j ∈ [k] (13b)

bu + bv ≤ 1 ∀{u, v} ∈ δ(D1, D2, . . . , Dk) (13c)

b ∈ {0, 1}n. (13d)

The objective (13a) maximizes the number of vertices selected in B. Con-
straints (13b) ensure that, from each district Dj , we select a subset of vertices
whose population is strictly less than L. Constraints (13c) ensure that for each
cut edge {u, v} we cannot select both of its endpoints; in this way, the vertices
D′

j selected from within district Dj do not touch the other district subsets D′
t,

t ̸= j. This model (13) is quite small, easy to solve in practice, and gives good
solutions. In fact, problem (13) is fixed-parameter tractable (fpt) with respect
to the dual parameter n − |B| by a simple, bounded search tree algorithm;
see Downey and Fellows [38] or Cygan et al. [30] for more about this generic
algorithmic technique. A possible algorithm for problem (13) is as follows.

1. if all cut edges {u, v} have at least one of bu and bv fixed to zero, then solve
the resulting problem using a greedy (exact) algorithm;

2. otherwise, pick a cut edge {u, v} for which both bu and bv are “free”. Create
two subproblems. In first subproblem, fix bu = 0. In second subproblem,
fix bv = 0. Solve the subproblems recursively by calling step 1.

Suppose that the search tree is explored in a breadth-first manner. In this way,
if there is a solution B of size |B| = n − t, then it will be found on level t
(or higher up in the tree) since one b variable is fixed to zero in each node of
the search tree. So, the algorithm can stop at level t and thus visits at most
2t+1 − 1 nodes. The greedy algorithm in step 1 runs in time O(n log n). So,
the total time is bounded by O(2tn log n). By first sorting the nodes in each
district by their populations, the greedy algorithm can run in linear time, thus
reducing the total time to O(2tn+ n log n). In our experiments, the value of t
is typically small, often around ten or twenty. We think this partially explains
why the (partial) warm start that we give for model (12) is so helpful.

Political districting to minimize cut edges 25

When we apply model (12) to New Mexico at the county-level, it identifies
a solution B consisting of all but five counties, V \ B = {15, 19, 20, 23, 27}.
This is depicted in Figure 7. Interestingly, the set of “interdicted” counties
(in gray fill) not only splits the graph into pieces (e.g., by 15, 19, 23, 27), it
also simply removes a high-population vertex (20). By spending less than one
second to solve model (12), we can fix a total of

(
28+1

2

)
= 406 variables from

the Hess model, see Table 4.

Figure 7: Illustration of L-fixing for New Mexico. On left, an optimal county-level
solution (in white) for problem (11) obtained by solving model (12). On right, the
best tract-level solution to problem (11) obtained in one minute with model (12).

6.4 U-fixing

Previously, we used the population lower bound L to safely fix x variables. In this
subsection, we exploit the population upper bound U . The main insight is that if
vertices i and j are su�ciently “far apart” then they cannot belong to the same
district, in which case we can fix xij = 0. Specifically, this holds if a shortest path
between them (with respect to vertex weights pi) has population greater than U .

For example, the vertex-weighted distance between vertices 1 and 9 in Figure 8
is distG,p(1, 9) = 5. So, if U = 3, then we can fix x19 = 0. This is a special case of
the LCUT inequalities xab 

P
c2C xcb where the length-U a, b-separator is C = ;.

1 2 3

4 5 6

7 8 9

Figure 8: An example to illustrate U -fixing.

In the context of diagonal-fixing, we can do better. Instead of computing vertex-
weighted distances in G, we can compute them in G[Vj]. That is, if distG[Vj],p(i, j) >
U , then we can fix xij = 0. We call this U -fixing.

For example, recall the instance from Figure 8 in which the task is to split the 3x3
grid into three districts of equal size. Consider the ordering (5, 2, 8, 1, 3, 4, 6, 7, 9).
After diagonal-fixing, any vertex could be assigned to vertex 2 except for 5, i.e.,
V2 = V \ {5}. However, the shortest vertex-weighted path from 8 to 2 in G[V2] has
length 5, and thus vertex 8 cannot be assigned to vertex 2. This is despite the fact

26

Fig. 7 Illustration of L-fixing for New Mexico. On left, an optimal county-level solution
(in white) for problem (11) obtained by solving model (12). On right, the best tract-level
solution to problem (11) obtained in one minute with model (12).

Table 4 shows that many county-level instances of problem (11) are eas-
ily solved with model (12) and allow us to fix more than 80% of the center
variables xjj . On the tract-level instances, we spend at most one minute on
model (12) and fix over 95% of the center variables, as Table 4 shows. The
right side of Figure 7 depicts a tract-level solution from model (12).

6.4 U-fixing

Previously, we used the population lower bound L to safely fix x variables. In
this subsection, we exploit the population upper bound U . The main insight is
that if vertices i and j are sufficiently “far apart” then they cannot belong to
the same district, in which case we can fix xij = 0. Specifically, this holds if a
shortest path between them (with respect to vertex weights pi) has population
greater than U . For example, the vertex-weighted distance between vertices 1
and 9 in Figure 8 is distG,p(1, 9) = 5. So, if U = 3, then we can fix x19 = 0.
This is a special case of the LCUT inequalities xab ≤ ∑

c∈C xcb where the
length-U a, b-separator is C = ∅.

26 Hamidreza Validi, Austin Buchanan

Figure 7: Illustration of L-fixing for New Mexico. On left, an optimal county-level
solution (in white) for problem (11) obtained by solving model (12). On right, the
best tract-level solution to problem (11) obtained in one minute with model (12).

6.4 U-fixing

Previously, we used the population lower bound L to safely fix x variables. In this
subsection, we exploit the population upper bound U . The main insight is that if
vertices i and j are su�ciently “far apart” then they cannot belong to the same
district, in which case we can fix xij = 0. Specifically, this holds if a shortest path
between them (with respect to vertex weights pi) has population greater than U .

For example, the vertex-weighted distance between vertices 1 and 9 in Figure 8
is distG,p(1, 9) = 5. So, if U = 3, then we can fix x19 = 0. This is a special case of
the LCUT inequalities xab 

P
c2C xcb where the length-U a, b-separator is C = ;.

1 2 3

4 5 6

7 8 9

Figure 8: An example to illustrate U -fixing.

In the context of diagonal-fixing, we can do better. Instead of computing vertex-
weighted distances in G, we can compute them in G[Vj]. That is, if distG[Vj],p(i, j) >
U , then we can fix xij = 0. We call this U -fixing.

For example, recall the instance from Figure 8 in which the task is to split the 3x3
grid into three districts of equal size. Consider the ordering (5, 2, 8, 1, 3, 4, 6, 7, 9).
After diagonal-fixing, any vertex could be assigned to vertex 2 except for 5, i.e.,
V2 = V \ {5}. However, the shortest vertex-weighted path from 8 to 2 in G[V2] has
length 5, and thus vertex 8 cannot be assigned to vertex 2. This is despite the fact

26

Fig. 8 An example to illustrate U -fixing.

In the context of diagonal-fixing, we can do better. Instead of computing
vertex-weighted distances in G, we can compute them in G[Vj]. That is, if
distG[Vj],p(i, j) > U , then we can fix xij = 0. We call this U -fixing.

For example, recall the instance from Figure 8 in which the task is to
split the 3x3 grid into three districts of equal size. Consider the ordering
(5, 2, 8, 1, 3, 4, 6, 7, 9). After diagonal-fixing, any vertex could be assigned to
vertex 2 except for 5, i.e., V2 = V \{5}. However, the shortest vertex-weighted
path from 8 to 2 in G[V2] has length 5, and thus vertex 8 cannot be assigned
to vertex 2. This is despite the fact that the vertex-weighted distance from 8
to 2 in G is suitable, distG,p(2, 8) = 3 ≤ U .

As reported in Table 5, an example of U -fixing for New Mexico is that
Union County (i = 33), which is located in the state’s northeast corner, can-
not be assigned to Bernalillo County (j = 19), home to New Mexico’s most
populous city Albuquerque and located near the state’s center. As Table 4
shows, U -fixing is helpful but not quite as helpful as diagonal-fixing and L-
fixing. Nevertheless, we include U -fixing in our implementation given that its
running time is negligible, requiring just n shortest path computations.

6.5 Z-fixing

Now, we fix some of the z variables. Recall that the primary constraint that
variable zje appears in is xuj − xvj ≤ zje from model (7), and that we seek to
minimize the sum of the z variables. Consequently, if we have already fixed
xuj to zero (or xvj to one), then we can fix zje = 0. We call this Z-fixing. As
Table 4 reports, this fixes 83% or more of the z variables on the county-level
instances, and 95% or more of the z variables on the tract-level instances.

6.6 Extensions for the Labeling model

In Appendix C, we extend many ideas from this section to the Labeling base
model. A key difference is the nature of the model symmetry and how it
is handled; instead of using diagonal-fixing, we propose to use the extended
formulation for partitioning orbitopes given by Faenza and Kaibel [46]. This
model has just O(kn) variables, constraints, and nonzeros, making it easy to
use. We also extend L-fixing, U -fixing, and Z-fixing. Table 12 from Appendix
C observes that these procedures are very helpful for fixing the root variables;

Political districting to minimize cut edges 27

88% or more of them are fixed on county-level instances, and 96% or more are
fixed on tract-level instances. Meanwhile, few x and z variables are fixed.

7 Final Computational Experiments

In this section, we conduct final computational experiments. Our aim is to
shed light on the following questions.

1. Does the extended objective from Section 4 help? How much does it strengthen
the root LP bound in practice? What is its overall effect on MIP solve time?
Do the benefits of a stronger model outweigh the cost of its larger size?

2. Which contiguity constraints perform best (among LCUT, SCF, and SHIR)?
Does the answer depend on the base model (Hess vs. Labeling)? Does the
answer depend on the symmetry handling technique (solver default vs. ag-
gressive symmetry handling vs. partitioning orbitope model)?

3. Overall, what is the fastest MIP approach for minimizing cut edges? What
size instances can it solve? How much faster is it than a näıve approach
(without our proposed arsenal of MIP tricks)?

These questions are answered in the following three subsections, respectively.
Recall that our PC, MIP solver, and test instances were discussed in Section 3.

7.1 Evaluating extended cut edges objective

Here, we analyze the impacts of the extended objective from Section 4. We do
not impose contiguity constraints in this section; their impact will be evaluated
in the next subsection.

First, we consider the effect of the extended objective in the context of
the Hess base model. We employ diagonal-fixing and L-fixing (without conti-
guity), as discussed previously, and use Gurobi’s default symmetry handling.
Note that U -fixing does not really apply when contiguity is not imposed. Re-
sults with and without constraints (7) are provided in Table 6. As the table
shows, the extended objective often improves the LP bound substantially. For
example, the LP bound strengthens from 5.73 to 22.30 for Louisiana, from
13.38 to 29.05 for Alabama, and from 3.58 to 14.66 for Iowa. With these
stronger bounds, the MIPs are solved more quickly. For example, the MIP
solve time improves from 2,093 seconds to 307 seconds for Iowa. Further, nei-
ther Louisiana nor Alabama were solved within the one-hour time-limit using
the original objective, but with aid of the extended objective they were solved
in 1,003 and 1,109 seconds, respectively.

Interestingly, while two tract-level MIPs could be solved with the extended
objective, none of the tract-level LP relaxations could be solved with the
original objective. This is perhaps surprising given that the extended objective
uses more variables! Inspecting the log files, we see why. For example, when
solving the tract-level LP for New Hampshire, the solver spends 112 seconds in

28 Hamidreza Validi, Austin Buchanan

Table 6 Impact of extended objective on the Hess base model (w/o contiguity constraints)
at county and tract levels under a 3,600-second time-limit (TL). We report the LP relaxation
bound (LP), the number of branch-and-bound nodes visited (B&B), and the time to solve
the MIP in seconds (time).

w/o extended objective w/ extended objective
state n k LP B&B time LP B&B time
ME 16 2 2.74 1 0.05 3.62 1 0.08
NM 33 3 6.43 1 0.52 10.97 1 0.23
ID 44 2 2.53 1 0.85 4.27 29 1.24
WV 55 3 4.22 1,282 13.60 9.41 1,001 5.93
LA 64 6 5.73 136,218 TL 22.30 257,754 1,002.87
AL 67 7 13.38 141,054 TL 29.05 289,115 1,108.70
AR 75 4 6.40 58,002 1,003.25 15.92 25,446 146.39
OK 77 5 12.62 40,662 510.67 21.36 2,194 32.34
MS 82 4 4.16 90,920 1,218.58 12.88 36,837 264.70
NE 93 3 3.19 661 103.64 9.71 960 21.53
IA 99 4 3.58 81,034 2,092.95 14.66 21,280 307.11
KS 105 4 4.76 34,992 521.03 13.45 18,153 236.76
NH 295 2 - 1 TL 7.44 1,626 2,426.24
ID 298 2 - 1 TL 5.31 114 1,655.01
ME 358 2 - 0 TL - 3 TL
WV 484 3 - 0 TL - 0 TL
NM 499 3 - 0 TL - 0 TL
NE 532 3 - 0 TL - 1 TL
UT 588 4 - 0 TL - 0 TL
MS 664 4 - 0 TL 22.27 0 TL
AR 686 4 - 0 TL - 0 TL
NV 687 4 - 0 TL - 0 TL

barrier and another 92 seconds for the primal and dual push phases; however,
the final simplex cleanup continued until the time limit. Meanwhile, when the
extended objective is used, barrier takes 6 seconds, the primal and dual push
phases take 3 seconds, and the final simplex cleanup takes 236 seconds. For
whatever reason, the LP solver has an easier time with the extended objective.

Next, we consider the effect of the extended objective on the Labeling
model. Results with and without the constraints of Ferreira et al. [47] are
provided in Table 7. As before, the extended objective often improves the
LP bound significantly. For example, it strengthens from 5.49 to 16.29 for
Louisiana, from 11.56 to 19.35 for Alabama, and from 5.36 to 10.03 for Iowa,
allowing the MIPs to be solved more quickly. For example, the MIP time im-
proves from 262 seconds to 24 seconds for Iowa. Again, neither Louisiana nor
Alabama were solved within the one-hour time-limit using the original objec-
tive, but with the extended objective they solve in 1,136 and 2,871 seconds,
respectively, and visited substantially fewer branch-and-bound nodes. Another
notable instance is Nebraska at the tract-level, whose MIP time improves from
3,585 seconds to 59 seconds when the extended objective is used. The number
of branch-and-bound nodes also drops from 477,860 to 3,877.

Comparing the results from Tables 6 and 7, we see that the Labeling model
typically solves more quickly than the Hess model, whether or not the extended

Political districting to minimize cut edges 29

Table 7 Impact of extended objective on the Labeling base model (w/o contiguity con-
straints) at county and tract levels under a 3,600-second time-limit (TL). We report the
LP relaxation bound (LP), the number of branch-and-bound nodes visited (B&B), and the
time to solve the MIP in seconds (time).

w/o extended objective w/ extended objective
state n k LP B&B time LP B&B time
ME 16 2 2.71 1 0.02 2.71 1 0.02
NM 33 3 5.75 92 0.14 6.63 17 0.14
ID 44 2 3.32 1 0.03 3.32 1 0.03
WV 55 3 5.55 6,101 1.77 7.09 599 0.36
LA 64 6 5.49 2,158,617 TL 16.29 433,484 1,136.13
AL 67 7 11.56 1,515,101 TL 19.35 707,025 2,871.13
AR 75 4 5.69 426,704 353.21 9.04 39,142 29.09
OK 77 5 13.95 83,723 108.74 14.94 3,778 7.88
MS 82 4 6.46 488,879 365.17 7.72 36,268 27.12
NE 93 3 3.87 706 1.62 6.13 584 0.89
IA 99 4 5.36 228,583 262.03 10.03 16,294 23.56
KS 105 4 7.91 103,634 136.01 10.23 6,206 11.38
NH 295 2 3.50 3,350 3.24 3.50 1,036 1.50
ID 298 2 2.27 638 1.47 2.27 302 0.81
ME 358 2 4.00 123 0.80 4.00 76 0.78
WV 484 3 5.74 72,476 579.40 7.05 8,468 92.79
NM 499 3 7.02 23,006 213.15 12.05 4,287 45.69
NE 532 3 3.67 477,860 3,584.86 5.34 3,877 58.68
UT 588 4 10.37 32,365 TL 15.37 76,338 TL
MS 664 4 7.85 32,379 TL 13.01 47,501 TL
AR 686 4 4.60 17,974 TL 8.77 28,520 TL
NV 687 4 9.94 19,456 TL 17.55 36,848 TL

objective is used. The differences are most pronounced on the large, tract-level
instances when k is very small (e.g., k = 2). In these cases, the Labeling base
model uses approximately n variables, while the Hess base model uses approx-
imately n2 variables. For example, when applying the extended objective to
New Hampshire (k = 2) at the tract-level, the Labeling base model has 1,852
variables remaining after presolve, while the Hess base model has 107,933 vari-
ables remaining after presolve. We think this explains the drastic differences
in MIP solve time. In contrast, when k is larger, the story is a little different.
For example, when applying the extended objective to Alabama (k = 7) at
the county-level, the Labeling base model has 1,343 variables after presolve,
while the Hess base model is only slightly larger with 5,520 variables after pre-
solve, putting them in similar territory. In fact, the MIP solves more quickly
with the Hess base model than with the Labeling base model (1,109 seconds
versus 2,871 seconds). In the next subsection, as contiguity is imposed, many
more Hess variables will be fixed via L-fixing. This diminishes the huge size
advantage that the Labeling model has enjoyed.

Finally, we observe that the cut edges objective does not achieve contiguity
“for free”, despite some researchers’ beliefs to the contrary. Figure 9 shows
tract-level districting plans for Idaho and West Virginia that, despite having
a minimum number of cut edges, are not contiguous.

30 Hamidreza Validi, Austin Buchanan

Figure 9: Contiguity does not come “for free” for ID and WV at the tract-level.

the county-level instances, we might give the award to LCUT. On the tract-level
instances, SCF takes a lead over LCUT (e.g., on WV and NM), and LCUT takes a
lead over SHIR (e.g., on WV, NM, and NE). Overall, we think the three di↵erent
contiguity models are all reasonable choices for the Hess model on these instances.

Next, we consider the e↵ect of the di↵erent contiguity constraints in the context
of the Labeling base model. We recognize that the LCUT model, which requires
the use of callbacks and the LazyConstraints parameter, will deactivate many or
all of Gurobi’s built-in symmetry handling techniques. For this reason, we were
interested to see which symmetry handling technique would perform best for it.
Table 10 provides results for the Label-LCUT model under Gurobi’s default sym-
metry handling (default), Gurobi’s aggressive symmetry handling (aggressive), and
the extended formulation for partitioning orbitopes (orbitope). As expected, there
is little di↵erence between the default and aggressive settings—all of which could
be attributed to noise. Introducing the orbitope setting into the mix, we see that
it is sometimes faster than the default setting: 388 seconds versus 504 seconds on
LA, and 24 seconds versus 228 seconds on NM (tract). Sometimes it is slower than
default: 27 seconds versus 10 seconds on KS, and 163 seconds versus 131 seconds
on NE (tract). Overall, we see a slight advantage to the orbitope setting.

We now consider the SCF model. Since the entire SCF model is provided to
the MIP solver a priori, we had hope that Gurobi’s built-in symmetry handling
techniques would be e↵ective. However, we found that the orbitope setting was
actually more e↵ective than the default setting and the aggressive setting, as Ta-
ble 11 shows. This could be explained by our variable fixing, which disturbs the
symmetry, leaving nothing for the MIP solver to exploit. Consequently, we reran
the results, disabling any variable fixing procedure that disturbed the symmetry
between the district labels: diagonal-fixing (lines 109–114 of fixing.py), a portion
of L-fixing (lines 162–167), and U -fixing (lines 219–254). With these changes, the
results were noticeably worse, with LA and AL failing to solve within the one-hour
time-limit. Others, like Hojny et al. [72], make similar observations when using the
SCIP solver; built-in symmetry handling is fragile and is disrupted by other tricks.

35

Fig. 9 Contiguity does not come “for free” for ID and WV at the tract-level.

7.2 Evaluating contiguity constraints and symmetry handling

Here, we analyze the impact of the different approaches for contiguity and
symmetry handling. All implementations use the fixing procedures L-fixing,
U -fixing, diagonal-fixing, and Z-fixing, as well as the extended objective.

When implementing the LCUT models, we add violated inequalities in a
callback procedure and thus need to invoke Gurobi’s LazyConstraints param-
eter. As in our previous work [132], we separate only integer points x∗ that
represent disconnected districting plans. For this, we use the linear-time algo-
rithm of Fischetti et al. [50] to identify a minimal a, b-separator and then chisel
it down to a minimal length-U a, b-separator with a simple procedure [132].
See our code for the full details.

First, we consider the effect of the different contiguity constraints in the
context of the Hess base model. Results are provided in Table 8. All contiguity
models solve the county-level instances, with the most difficult instance being
Alabama, which requires roughly 20 minutes to solve. The county-level times
are roughly comparable across the different contiguity models, with each taking
its turn as the noticeably fastest method: the SCF model for KS, the SHIR
model for LA; and the LCUT model for AL, AR, MS, and IA. If a “winner”
had to be chosen for the county-level instances, we might give the award to
LCUT. On the tract-level instances, SCF takes a lead over LCUT (e.g., on
WV and NM), and LCUT takes a lead over SHIR (e.g., on WV, NM, and
NE). Overall, we think the three different contiguity models are all reasonable
choices for the Hess model on these instances.

Next, we consider the effect of the different contiguity constraints in the
context of the Labeling base model. We recognize that the LCUT model,
which requires the use of callbacks and the LazyConstraints parameter, will
deactivate many or all of Gurobi’s built-in symmetry handling techniques. For
this reason, we were interested to see which symmetry handling technique
would perform best for it. Table 13 from Appendix D provides results for
the Label-LCUT model under Gurobi’s default symmetry handling, Gurobi’s
aggressive symmetry handling, and the extended formulation for partitioning
orbitopes. As expected, there is little difference between the default and ag-

Political districting to minimize cut edges 31

Table 8 Results for Hess base model with different contiguity models. We report the lower
bound (LB) and upper bound (UB) at termination under a 3,600-second time-limit (TL).

Hess-LCUT Hess-SCF Hess-SHIR
state n k LB UB time LB UB time LB UB time
ME 16 2 16 16 0.19 16 16 0.11 16 16 0.11
NM 33 3 17 17 0.28 17 17 0.12 17 17 0.12
ID 44 2 10 10 0.31 10 10 0.16 10 10 0.25
WV 55 3 23 23 3.04 23 23 1.69 23 23 2.14
LA 64 6 49 49 209.87 49 49 433.77 49 49 91.50
AL 67 7 55 55 1,125.44 55 55 1,200.22 55 55 1,252.13
AR 75 4 33 33 45.86 33 33 54.05 33 33 65.19
OK 77 5 40 40 9.43 40 40 10.06 40 40 12.89
MS 82 4 34 34 107.80 34 34 128.20 34 34 160.19
NE 93 3 19 19 2.47 19 19 4.86 19 19 4.87
IA 99 4 33 33 72.61 33 33 96.34 33 33 192.49
KS 105 4 32 32 62.00 32 32 20.61 32 32 29.30
NH 295 2 26 26 110.69 26 26 102.73 26 26 143.98
ID 298 2 17 17 22.43 17 17 33.25 17 17 23.84
ME 358 2 20 20 80.54 20 20 70.52 20 20 49.70
WV 484 3 43 43 1,142.36 43 43 656.71 43 43 2,239.97
NM 499 3 43 43 695.74 43 43 385.64 28 43 TL
NE 532 3 30 44 TL 40 44 TL 17 48 TL
UT 588 4 30 90 TL 31 90 TL 26 90 TL
MS 664 4 25 65 TL 27 64 TL 24 68 TL
AR 686 4 19 76 TL 19 78 TL 19 78 TL
NV 687 4 27 89 TL 29 86 TL 26 89 TL

gressive settings—all of which could be attributed to noise. Introducing the
orbitope setting into the mix, we see that it is sometimes faster than the de-
fault setting: 388 seconds versus 504 seconds on LA, and 24 seconds versus
228 seconds on NM (tract). Sometimes it is slower than default: 27 seconds
versus 10 seconds on KS, and 163 seconds versus 131 seconds on NE (tract).
Overall, we see a slight advantage to the orbitope setting.

We now consider the SCF model. Since the entire SCF model is provided to
the MIP solver a priori, we had hope that Gurobi’s built-in symmetry handling
techniques would be effective. However, we found that the orbitope setting was
actually more effective than the default setting and the aggressive setting, as
Table 14 from Appendix D shows. This could be explained by our variable
fixing, which disturbs the symmetry, leaving nothing for the MIP solver to
exploit. Consequently, we reran the results, disabling any variable fixing pro-
cedure that disturbed the symmetry between the district labels: diagonal-fixing
(lines 109–114 of fixing.py), a portion of L-fixing (lines 162–167), and U -
fixing (lines 219–254). With these changes, the results were noticeably worse,
with LA and AL failing to solve within the one-hour time-limit. Others, like
Hojny et al. [72], make similar observations when using the SCIP solver; built-
in symmetry handling is fragile and is disrupted by other tricks.

Last, we turn to the SHIR model. This model is provided in its entirety to
the MIP solver a priori, giving us hope that the MIP solver’s built-in symmetry

32 Hamidreza Validi, Austin Buchanan

handling techniques could shine. The results in Table 15 from Appendix D
are mixed. First, we observe that the default and aggressive settings perform
similarly, typically visiting the same number of branch-and-bound nodes and
solving in about the same time. It appears that the aggressive setting did not
change the solver’s behavior. Introducing the orbitope setting into the mix,
we see that it sometimes performs much better than the default setting, e.g.,
956 seconds versus 1648 seconds for AL. Other times it performs worse, e.g.,
321 seconds versus 116 seconds for LA, and 335 seconds versus 157 seconds for
WV (tract). Overall, there might be a slight advantage to the orbitope setting.

Table 9 summarizes the performance of the Labeling model using the dif-
ferent contiguity models, each using the orbitope symmetry setting. The con-
tiguity models solve the exact same instances within the one-hour time-limit,
with AL again being the most difficult county-level instance and LA the next
hardest. Each contiguity model takes its turn as the fastest method: LCUT
for AR, IA, NM (tract), and NE (tract); SCF for OK, KS, and WV (tract);
and SHIR for LA. Overall, it appears that LCUT takes a slight lead over the
other models, although they all seem to be reasonable choices.

Table 9 Results for Labeling base model with different contiguity models. We report the
lower bound (LB) and upper bound (UB) at termination under a 3,600-second time-limit
(TL). All experiments here use the orbitope setting.

Label-LCUT Label-SCF Label-SHIR
state n k LB UB time LB UB time LB UB time
ME 16 2 16 16 0.17 16 16 0.12 16 16 0.09
NM 33 3 17 17 0.09 17 17 0.06 17 17 0.06
ID 44 2 10 10 0.12 10 10 0.05 10 10 0.08
WV 55 3 23 23 1.11 23 23 1.03 23 23 1.23
LA 64 6 49 49 394.16 49 49 512.65 49 49 320.69
AL 67 7 55 55 1,019.40 55 55 1,269.54 55 55 956.12
AR 75 4 33 33 23.54 33 33 31.79 33 33 40.38
OK 77 5 40 40 8.50 40 40 4.11 40 40 6.78
MS 82 4 34 34 54.80 34 34 32.06 34 34 70.84
NE 93 3 19 19 1.44 19 19 0.62 19 19 0.91
IA 99 4 33 33 29.79 33 33 35.59 33 33 79.24
KS 105 4 32 32 27.21 32 32 13.03 32 32 27.09
NH 295 2 26 26 3.53 26 26 2.83 26 26 12.58
ID 298 2 17 17 1.77 17 17 1.02 17 17 1.70
ME 358 2 20 20 2.72 20 20 1.29 20 20 1.66
WV 484 3 43 43 158.64 43 43 151.84 43 43 334.49
NM 499 3 43 43 24.38 43 43 96.35 43 43 62.80
NE 532 3 44 44 163.78 44 44 207.06 44 44 392.56
UT 588 4 66 79 TL 63 79 TL 61 79 TL
MS 664 4 45 63 TL 47 63 TL 41 63 TL
AR 686 4 39 70 TL 40 72 TL 30 70 TL
NV 687 4 55 77 TL 55 77 TL 51 77 TL

Political districting to minimize cut edges 33

7.3 Identifying fastest MIP approach and limitations

Here we try to identify the fastest MIP approach and its limitations. To this
end, Table 10 summarizes the solve times that were reported in Tables 8 and 9.
On county-level instances, the results are mixed. For example, Hess-SHIR is
fastest on LA, Label-SHIR on AL, Label-LCUT on AR and IA, Label-SCF
on MS and KS. Generally, the Labeling implementations are faster, dominat-
ing the Hess implementations on the county-level instances MS and IA. This
dominance becomes more pronounced on the tract-level instances, with the
Labeling implementations often being 10x-50x faster than their Hess counter-
parts. Notably, each Labeling implementation solves NE (tract) in under 7
minutes, but none of the Hess implementations solve it within one hour.

Table 10 Solve times under a 3600-second limit for the Hess and Labeling base models
with different contiguity models (reproduced from Tables 8 and 9).

Hess base model Labeling base model
state n k LCUT SCF SHIR LCUT SCF SHIR
ME 16 2 0.19 0.11 0.11 0.17 0.12 0.09
NM 33 3 0.28 0.12 0.12 0.09 0.06 0.06
ID 44 2 0.31 0.16 0.25 0.12 0.05 0.08
WV 55 3 3.04 1.69 2.14 1.11 1.03 1.23
LA 64 6 209.87 433.77 91.50 394.16 512.65 320.69
AL 67 7 1,125.44 1,200.22 1,252.13 1,019.40 1,269.54 956.12
AR 75 4 45.86 54.05 65.19 23.54 31.79 40.38
OK 77 5 9.43 10.06 12.89 8.50 4.11 6.78
MS 82 4 107.80 128.20 160.19 54.80 32.06 70.84
NE 93 3 2.47 4.86 4.87 1.44 0.62 0.91
IA 99 4 72.61 96.34 192.49 29.79 35.59 79.24
KS 105 4 62.00 20.61 29.30 27.21 13.03 27.09
NH 295 2 110.69 102.73 143.98 3.53 2.83 12.58
ID 298 2 22.43 33.25 23.84 1.77 1.02 1.70
ME 358 2 80.54 70.52 49.70 2.72 1.29 1.66
WV 484 3 1,142.36 656.71 2,239.97 158.64 151.84 334.49
NM 499 3 695.74 385.64 TL 24.38 96.35 62.80
NE 532 3 TL TL TL 163.78 207.06 392.56
UT 588 4 TL TL TL TL TL TL
MS 664 4 TL TL TL TL TL TL
AR 686 4 TL TL TL TL TL TL
NV 687 4 TL TL TL TL TL TL

Comparing the times from Table 10 against those of the näıve implemen-
tation from Table 1, we see huge improvements. For example, the näıve Hess
implementation could not solve WV (county) within one hour (nor any of the
larger instances), but now it takes 2 or 3 seconds. Contiguity is also now en-
forced3. The Labeling model, which previously could not solve LA and AL,
can now solve them within 20 minutes. Key to these improvements are the

3 Comparisons between Näıve models with different contiguity constraints are also pro-
vided in Appendix E.

34 Hamidreza Validi, Austin Buchanan

tricks from the MIP arsenal that we use. Based on our experiments, it appears
that symmetry handling and contiguity constraints have less impact on solve
time than the heuristic warm start, extended objective, and variable fixing.

8 Conclusion and Future Work

In this paper, we study a stylized redistricting problem in which the task is
to split up a graph into a prescribed number of contiguous districts, each sat-
isfying population balance constraints, with the objective of minimizing the
number of “cut” edges between districts. First, we observe that a straightfor-
ward MIP model, the Labeling model, which has been proposed in the previous
literature, is unable to solve all county-level instances in the USA. Another
model, the Hess model, is also ill-suited for this task when a näıve implemen-
tation is used. This is partially a consequence of their weak LP relaxations
and model symmetry. Moreover, they often generate disconnected districting
plans—even at the census tract level—if contiguity is not explicitly enforced.

In response, we use various MIP tricks to speed up the computations: a
strong extended formulation for the cut edges objective [47], heuristic warm
starts via GerryChain [99], symmetry handling via partitioning orbitopes [46]
and diagonal-fixing [20], and other powerful variable fixing techniques that
allow us to fix 95% or more of the Hess variables on tract-level instances. To
our knowledge, we are the first to implement and use Faenza and Kaibel’s
extended formulation for partitioning orbitopes [46]. The newly proposed L-
fixing procedure is also crucial for the Hess base model to be a reasonable
choice on county-level instances. Nevertheless, we ultimately find that the
Labeling base model performs better than the Hess base model on large, tract-
level instances when the number of districts is small. It allows us to solve
instances with up to 532 census tracts to optimality in a one-hour time-limit.
When it comes to imposing contiguity constraints, we find that the single-
commodity flow formulation (SCF) of Hojny et al. [72], the multi-commodity
flow formulation (SHIR) of Shirabe [104, 124, 125], and the LCUT model of
Validi et al. [132] are all reasonable choices, with the SCF model and LCUT
model sometimes taking a slight lead, depending on the circumstances. Our
data, code, and results are available on GitHub at https://github.com/ham
idrezavalidi/Political-Districting-to-Minimize-Cut-Edges [131].

We mention two opportunities for future work. Our procedures are able to
handle all county-level instances, but only some tract-level instances (n ≤ 532).
Meanwhile, we are aware of some other, related districting instances (nj1,
nj2, nj3) generated by Jonathan Eckstein for MIPLIB 2017 that remain un-
solved [43, 55]. It would be nice to develop improved procedures for handling
these large instances. A big obstacle to overcome are the weak LP bounds
that cut edge models provide. For example, one could use semidefinite relax-
ations [44] or develop a branch-and-price algorithm for a set partitioning model
that uses a binary variable for each possible district [54, 97, 98]. As noted to us
by Eckstein [43], doing these tasks well is nontrivial, and we consider it to be

https://github.com/hamidrezavalidi/Political-Districting-to-Minimize-Cut-Edges
https://github.com/hamidrezavalidi/Political-Districting-to-Minimize-Cut-Edges

Political districting to minimize cut edges 35

outside our scope. Another opportunity is to extend our work to minimize the
Polsby-Popper score [113], which is a nonlinear expression relating to district
area and perimeter—the latter of which can be viewed as weighted cut edges.

Acknowledgments

This material is based upon work supported by the National Science Founda-
tion under Grant No. 1942065. Hamid thanks Moon Duchin for bringing cut
edges to his attention as a redistricting compactness measure during VRDI
2019. Finally, we thank Gabe Schoenbach for helping us with GerryChain.

References

1. Achterberg, T.: Symmetry breaking algorithm in Gurobi. https://supp
ort.gurobi.com/hc/en-us/community/posts/360050295511-Symme

try-Breaking-Algorithm-in-Gurobi (2020). Accessed: 2021-02-22
2. Adler, W.T., Wang, S.S.H.: Response to Cho and Liu, “Sampling from

complicated and unknown distributions: Monte Carlo and Markov chain
Monte Carlo methods for redistricting”. Physica A: Statistical Mechanics
and its Applications 516, 591–593 (2019)

3. Alès, Z., Knippel, A.: The k-partitioning problem: Formulations and
branch-and-cut. Networks 76(3), 323–349 (2020)

4. Altman, M.: The computational complexity of automated redistricting:
Is automation the answer? Rutgers Computer & Tech. LJ 23, 81 (1997)

5. Altman, M., McDonald, M.: Redistricting by formula: An Ohio reform
experiment. American Politics Research 46(1), 103–131 (2018)

6. Altman, M., McDonald, M.P., et al.: BARD: Better automated redis-
tricting. Journal of Statistical Software 42(4), 1–28 (2011)

7. Appel, K.I., Haken, W.: Every planar map is four colorable, vol. 98.
American Mathematical Society (1989)

8. Bacao, F., Lobo, V., Painho, M.: Applying genetic algorithms to zone
design. Soft Computing 9(5), 341–348 (2005)

9. Bader, D.A., Meyerhenke, H., Sanders, P., Wagner, D.: Graph partition-
ing and graph clustering, vol. 588. American Mathematical Society Prov-
idence, RI (2013)

10. Bar-Natan, A., Najt, L., Schutzman, Z.: The gerrymandering jumble:
map projections permute districts’ compactness scores. Cartography and
Geographic Information Science 47(4), 321–335 (2020)

11. Barnes, R., Solomon, J.: Gerrymandering and compactness: Implemen-
tation flexibility and abuse. Political Analysis (2020). To appear

12. Bastubbe, M., Lübbecke, M.E.: A branch-and-price algorithm for capac-
itated hypergraph vertex separation. Mathematical Programming Com-
putation 12(1), 39–68 (2020)

13. Becker, A., Solomon, J.: Redistricting algorithms (2020)

https://support.gurobi.com/hc/en-us/community/posts/360050295511-Symmetry-Breaking-Algorithm-in-Gurobi
https://support.gurobi.com/hc/en-us/community/posts/360050295511-Symmetry-Breaking-Algorithm-in-Gurobi
https://support.gurobi.com/hc/en-us/community/posts/360050295511-Symmetry-Breaking-Algorithm-in-Gurobi

36 Hamidreza Validi, Austin Buchanan

14. Ben-Ameur, W., Mohamed-Sidi, M.A., Neto, J.: The k-separator prob-
lem: polyhedra, complexity and approximation results. Journal of Com-
binatorial Optimization 29(1), 276–307 (2015)

15. Bichot, C.E., Siarry, P. (eds.): Graph Partitioning. John Wiley & Sons
(2013)

16. Borndörfer, R., Ferreira, C.E., Martin, A.: Decomposing matrices into
blocks. SIAM Journal on Optimization 9(1), 236–269 (1998)

17. Bozkaya, B., Erkut, E., Laporte, G.: A tabu search heuristic and adap-
tive memory procedure for political districting. European Journal of
Operational Research 144(1), 12–26 (2003)

18. Browdy, M.H.: Simulated annealing: an improved computer model for
political redistricting. Yale Law & Policy Review 8(1), 163–179 (1990)

19. Bullock III, C.S.: Redistricting: The most political activity in America.
Rowman & Littlefield Publishers (2010)

20. Campêlo, M., Campos, V.A., Corrêa, R.C.: On the asymmetric repre-
sentatives formulation for the vertex coloring problem. Discrete Applied
Mathematics 156(7), 1097–1111 (2008)

21. Carvajal, R., Constantino, M., Goycoolea, M., Vielma, J.P., Weintraub,
A.: Imposing connectivity constraints in forest planning models. Opera-
tions Research 61(4), 824–836 (2013)

22. Cho, W.K.T., Liu, Y.Y.: Sampling from complicated and unknown dis-
tributions: Monte Carlo and Markov chain Monte Carlo methods for
redistricting. Physica A: Statistical Mechanics and its Applications 506,
170–178 (2018)

23. Chopra, S., Rao, M.: Facets of the k-partition polytope. Discrete Applied
Mathematics 61(1), 27–48 (1995)

24. Chopra, S., Rao, M.R.: The partition problem. Mathematical Program-
ming 59(1-3), 87–115 (1993)

25. Chou, C., Kimbrough, S.O., Murphy, F.H., Sullivan-Fedock, J., Woodard,
C.J.: On empirical validation of compactness measures for electoral re-
districting and its significance for application of models in the social
sciences. Social Science Computer Review 32(4), 534–543 (2014)

26. Cohen-Addad, V., Klein, P.N., Young, N.E.: Balanced centroidal power
diagrams for redistricting. In: Proceedings of the 26th ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information
Systems, pp. 389–396. ACM (2018)

27. Cohen-Addad, V., N. Klein, P., Marx, D.: On the computational
tractability of a geographic clustering problem arising in redistricting.
arXiv preprint arXiv:2009.00188 (2020)

28. Conforti, M., Rao, M., Sassano, A.: The equipartition polytope. II: Valid
inequalities and facets. Mathematical Programming 49(1), 71–90 (1990)

29. Cornaz, D., Furini, F., Lacroix, M., Malaguti, E., Mahjoub, A.R., Martin,
S.: The vertex k-cut problem. Discrete Optimization 31, 8–28 (2019)

30. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D.,
Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms.
Springer (2015)

Political districting to minimize cut edges 37

31. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yan-
nakakis, M.: The complexity of multiterminal cuts. SIAM Journal on
Computing 23(4), 864–894 (1994)

32. Daskin, M.S., Tucker, E.L.: The trade-off between the median and range
of assigned demand in facility location models. International Journal of
Production Research 56(1-2), 97–119 (2018)

33. DeFord, D.: Dual graphs for 2010 census units (2021). https://people

.csail.mit.edu/ddeford/dual graphs.html

34. DeFord, D., Duchin, M.: Redistricting reform in Virginia: Districting cri-
teria in context. Virginia Policy Review 12(2), 120–146 (2019)

35. DeFord, D., Duchin, M., Solomon, J.: Recombination: A family of markov
chains for redistricting. Harvard Data Science Review (2021). DOI
10.1162/99608f92.eb30390f. URL https://hdsr.mitpress.mit.edu/

pub/1ds8ptxu. Https://hdsr.mitpress.mit.edu/pub/1ds8ptxu
36. DeFord, D., Lavenant, H., Schutzman, Z., Solomon, J.: Total variation

isoperimetric profiles. SIAM Journal on Applied Algebra and Geometry
3(4), 585–613 (2019)

37. Deza, M., Grötschel, M., Laurent, M.: Clique-web facets for multicut
polytopes. Mathematics of Operations Research 17(4), 981–1000 (1992)

38. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complex-
ity, vol. 4. Springer (2013)

39. Dube, M., Clark, J.: Beyond the circle: Measuring district compactness
using graph theory. In: Northeast Political Science Association Confer-
ence (2016)

40. Duchin, M., Strogatz, S.: Moon Duchin on fair voting and random walks.
Quanta Magazine (2020). https://www.quantamagazine.org/moon-du
chin-on-fair-voting-and-random-walks-20200407/

41. Duchin, M., Tenner, B.E.: Discrete geometry for electoral geography.
arXiv preprint arXiv:1808.05860 (2018)

42. Dyer, M.E., Frieze, A.M.: On the complexity of partitioning graphs into
connected subgraphs. Discrete Applied Mathematics 10(2), 139–153
(1985)

43. Eckstein, J.: Personal communication (2020)
44. Eisenblätter, A.: The semidefinite relaxation of the k-partition polytope

is strong. In: International Conference on Integer Programming and Com-
binatorial Optimization, pp. 273–290. Springer (2002)

45. Faenza, Y.: Personal communication (2021)
46. Faenza, Y., Kaibel, V.: Extended formulations for packing and parti-

tioning orbitopes. Mathematics of Operations Research 34(3), 686–697
(2009)

47. Ferreira, C.E., Martin, A., de Souza, C.C., Weismantel, R., Wolsey, L.A.:
Formulations and valid inequalities for the node capacitated graph par-
titioning problem. Mathematical Programming 74(3), 247–266 (1996)

48. Ferreira, C.E., Martin, A., de Souza, C.C., Weismantel, R., Wolsey, L.A.:
The node capacitated graph partitioning problem: a computational study.
Mathematical Programming 81(2), 229–256 (1998)

https://people.csail.mit.edu/ddeford/dual_graphs.html
https://people.csail.mit.edu/ddeford/dual_graphs.html
https://hdsr.mitpress.mit.edu/pub/1ds8ptxu
https://hdsr.mitpress.mit.edu/pub/1ds8ptxu
https://www.quantamagazine.org/moon-duchin-on-fair-voting-and-random-walks-20200407/
https://www.quantamagazine.org/moon-duchin-on-fair-voting-and-random-walks-20200407/

38 Hamidreza Validi, Austin Buchanan

49. Fifield, B., Higgins, M., Imai, K., Tarr, A.: A new automated redistricting
simulator using Markov chain Monte Carlo. Work. Pap., Princeton Univ.,
Princeton, NJ (2015)

50. Fischetti, M., Leitner, M., Ljubić, I., Luipersbeck, M., Monaci, M., Resch,
M., Salvagnin, D., Sinnl, M.: Thinning out Steiner trees: a node-based
model for uniform edge costs. Mathematical Programming Computation
9(2), 203–229 (2017)

51. Fischetti, M., Lodi, A., Salvagnin, D.: Just MIP it! In: Matheuristics,
pp. 39–70. Springer (2009)

52. Furini, F., Ljubić, I., Malaguti, E., Paronuzzi, P.: On integer and bilevel
formulations for the k-vertex cut problem. Mathematical Programming
Computation 12(2), 133–164 (2020)

53. Furini, F., Ljubić, I., Malaguti, E., Paronuzzi, P.: Casting light on the
hidden bilevel combinatorial structure of the capacitated vertex separator
problem. Operations Research (2021). To appear

54. Garfinkel, R.S., Nemhauser, G.L.: Optimal political districting by im-
plicit enumeration techniques. Management Science 16(8), B–495 (1970)

55. Gleixner, A., Hendel, G., Gamrath, G., Achterberg, T., Bastubbe, M.,
Berthold, T., Christophel, P., Jarck, K., Koch, T., Linderoth, J., et al.:
MIPLIB 2017: data-driven compilation of the 6th mixed-integer program-
ming library. Mathematical Programming Computation (2021). To ap-
pear

56. Goderbauer, S., Winandy, J.: Political districting problem: Literature
review and discussion with regard to federal elections in Germany (2018).
URL https://www.or.rwth-aachen.de/files/research/repORt/Li

tSurvey PoliticalDistricting Goderbauer Winandy 20181024.pdf

57. Goemans, M.X., Myung, Y.S.: A catalog of Steiner tree formulations.
Networks 23(1), 19–28 (1993)

58. Goldschmidt, O., Hochbaum, D.S.: A polynomial algorithm for the k-cut
problem for fixed k. Mathematics of Operations Research 19(1), 24–37
(1994)

59. Gopalan, R., Kimbrough, S.O., Murphy, F.H., Quintus, N.: The Philadel-
phia districting contest: Designing territories for city council based upon
the 2010 census. Interfaces 43(5), 477–489 (2013)

60. Grofman, B.: Criteria for districting: A social science perspective. UCLA
L. Rev. 33, 77 (1985)

61. Grötschel, M., Wakabayashi, Y.: A cutting plane algorithm for a cluster-
ing problem. Mathematical Programming 45(1), 59–96 (1989)

62. Grötschel, M., Wakabayashi, Y.: Facets of the clique partitioning poly-
tope. Mathematical Programming 47(1), 367–387 (1990)

63. Guo, D., Jin, H.: iRedistrict: Geovisual analytics for redistricting opti-
mization. Journal of Visual Languages & Computing 22(4), 279–289
(2011)

64. Gurnee, W., Shmoys, D.B.: Fairmandering: A column generation
heuristic for fairness-optimized political districting. arXiv preprint
arXiv:2103.11469 (2021)

https://www.or.rwth-aachen.de/files/research/repORt/LitSurvey_PoliticalDistricting__Goderbauer_Winandy_20181024.pdf
https://www.or.rwth-aachen.de/files/research/repORt/LitSurvey_PoliticalDistricting__Goderbauer_Winandy_20181024.pdf

Political districting to minimize cut edges 39

65. Gutiérrez-Andrade, M.Á., Rincón-Garćıa, E.A., de-los Cobos-Silva, S.G.,
Lara-Velázquez, P., Mora-Gutiérrez, R.A., Ponsich, A.: Simulated an-
nealing and artificial bee colony for the redistricting process in Mexico.
INFORMS Journal on Applied Analytics 49(3), 189–200 (2019)

66. Hansen, P., Jaumard, B.: Cluster analysis and mathematical program-
ming. Mathematical Programming 79(1), 191–215 (1997)

67. Hartvigsen, D.: The planar multiterminal cut problem. Discrete Applied
Mathematics 85(3), 203–222 (1998)

68. Hebert, J.G., Vandenberg, M.E., Smith, P.: The Realist’s Guide to Re-
districting: Avoiding the Legal Pitfalls. American Bar Association (2010)

69. Hess, S., Weaver, J., Siegfeldt, H., Whelan, J., Zitlau, P.: Nonpartisan
political redistricting by computer. Operations Research 13(6), 998–1006
(1965)

70. Hettle, C., Zhu, S., Gupta, S., Xie, Y.: Balanced districting on grid
graphs with provable compactness and contiguity. arXiv preprint
arXiv:2102.05028 (2021)

71. Hojati, M.: Optimal political districting. Computers & Operations Re-
search 23(12), 1147–1161 (1996)

72. Hojny, C., Joormann, I., Lüthen, H., Schmidt, M.: Mixed-integer pro-
gramming techniques for the connected max-k-cut problem. Mathemat-
ical Programming Computation 13(1), 75–132 (2021)

73. Hojny, C., Pfetsch, M.E.: Polytopes associated with symmetry handling.
Mathematical Programming 175(1-2), 197–240 (2019)

74. Johnson, E.L., Mehrotra, A., Nemhauser, G.L.: Min-cut clustering.
Mathematical Programming 62(1-3), 133–151 (1993)

75. Kaibel, V., Peinhardt, M., Pfetsch, M.E.: Orbitopal fixing. Discrete Op-
timization 8(4), 595–610 (2011)

76. Kaibel, V., Pfetsch, M.: Packing and partitioning orbitopes. Mathemat-
ical Programming 114(1), 1–36 (2008)

77. Kaplan, H., Nussbaum, Y.: Maximum flow in directed planar graphs with
vertex capacities. Algorithmica 61(1), 174–189 (2011)

78. Kaufman, A., King, G., Komisarchik, M.: How to measure legislative
district compactness if you only know it when you see it. American
Journal of Political Science (Forthcoming)

79. Kim, M., Xiao, N.: Contiguity-based optimization models for political
redistricting problems. International Journal of Applied Geospatial Re-
search (IJAGR) 8(4), 1–18 (2017)

80. Kim, M.J.: Give-and-take heuristic model to political redistricting prob-
lems. Spatial Information Research 27, 539–552 (2019)

81. King, D.M., Jacobson, S.H., Sewell, E.C.: Efficient geo-graph contigu-
ity and hole algorithms for geographic zoning and dynamic plane graph
partitioning. Mathematical Programming 149(1-2), 425–457 (2015)

82. King, D.M., Jacobson, S.H., Sewell, E.C.: The geo-graph in practice:
creating United States congressional districts from census blocks. Com-
putational Optimization and Applications 69(1), 25–49 (2018)

40 Hamidreza Validi, Austin Buchanan

83. King, D.M., Jacobson, S.H., Sewell, E.C., Cho, W.K.T.: Geo-graphs: an
efficient model for enforcing contiguity and hole constraints in planar
graph partitioning. Operations Research 60(5), 1213–1228 (2012)

84. Labbé, M., Özsoy, F.A.: Size-constrained graph partitioning polytopes.
Discrete Mathematics 310(24), 3473–3493 (2010)

85. Lacki, J., Nussbaum, Y., Sankowski, P., Wulff-Nilsen, C.: Single source–
all sinks max flows in planar digraphs. In: Foundations of Computer Sci-
ence (focs), 2012 IEEE 53rd Annual Symposium on, pp. 599–608. IEEE
(2012)

86. Lee, E.: Partitioning a graph into small pieces with applications to path
transversal. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 1546–1558. SIAM (2017)

87. Levin, H.A., Friedler, S.A.: Automated congressional redistricting. Jour-
nal of Experimental Algorithmics (JEA) 24(1), 1–10 (2019)

88. Levitt, J.: A citizen’s guide to redistricting. Brennan Center for Justice
at New York University School of Law (2010)

89. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary
properties is NP-complete. Journal of Computer and System Sciences
20(2), 219–230 (1980)

90. Liu, Y.Y., Cho, W.K.T., Wang, S.: PEAR: a massively parallel evolu-
tionary computation approach for political redistricting optimization and
analysis. Swarm and Evolutionary Computation 30, 78–92 (2016)

91. Magnanti, T.L., Wolsey, L.A.: Optimal trees. Handbooks in Operations
Research and Management Science 7, 503–615 (1995)

92. Margot, F.: Pruning by isomorphism in branch-and-cut. Mathematical
Programming 94(1), 71–90 (2002)

93. Margot, F.: Exploiting orbits in symmetric ILP. Mathematical Program-
ming 98(1-3), 3–21 (2003)

94. Margot, F.: Small covering designs by branch-and-cut. Mathematical
Programming 94(2-3), 207–220 (2003)

95. Margot, F.: Symmetric ILP: Coloring and small integers. Discrete Opti-
mization 4(1), 40–62 (2007)

96. Margot, F.: Symmetry in integer linear programming. In: 50 Years of
Integer Programming 1958-2008, pp. 647–686. Springer (2010)

97. Mehrotra, A., Johnson, E.L., Nemhauser, G.L.: An optimization based
heuristic for political districting. Management Science 44(8), 1100–1114
(1998)

98. Mehrotra, A., Trick, M.A.: Cliques and clustering: A combinatorial ap-
proach. Operations Research Letters 22(1), 1–12 (1998)

99. MGGG: GerryChain 0.2.12. (2021). https://gerrychain.readthedo

cs.io/en/latest/

100. Miller, S.: The problem of redistricting: the use of centroidal Voronoi dia-
grams to build unbiased congressional districts. Senior project, Whitman
College (2007)

101. Miyazawa, F.K., Moura, P.F., Ota, M.J., Wakabayashi, Y.: Partitioning
a graph into balanced connected classes: formulations, separation and ex-

https://gerrychain.readthedocs.io/en/latest/
https://gerrychain.readthedocs.io/en/latest/

Political districting to minimize cut edges 41

periments. European Journal of Operational Research (2021). To appear
102. Nagel, S.S.: Simplified bipartisan computer redistricting. Stan. L. Rev.

17, 863 (1964)
103. Niemi, R.G., Grofman, B., Carlucci, C., Hofeller, T.: Measuring compact-

ness and the role of a compactness standard in a test for partisan and
racial gerrymandering. The Journal of Politics 52(4), 1155–1181 (1990)

104. Oehrlein, J., Haunert, J.H.: A cutting-plane method for contiguity-
constrained spatial aggregation. Journal of Spatial Information Science
2017(15), 89–120 (2017)

105. Olson, B.: Impartial automatic redistricting. https://bdistricting.c

om/2010/ (2019). Accessed: 2019-06-21
106. Oosten, M., Rutten, J.H., Spieksma, F.C.: The clique partitioning prob-

lem: facets and patching facets. Networks: An International Journal
38(4), 209–226 (2001)

107. Oosten, M., Rutten, J.H., Spieksma, F.C.: Disconnecting graphs by re-
moving vertices: a polyhedral approach. Statistica Neerlandica 61(1),
35–60 (2007)

108. Ostrowski, J., Anjos, M.F., Vannelli, A.: Modified orbital branching for
structured symmetry with an application to unit commitment. Mathe-
matical Programming 150(1), 99–129 (2015)

109. Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S.: Orbital branching.
Mathematical Programming 126(1), 147–178 (2011)

110. Pfetsch, M.: Personal communication (2021)
111. Pfetsch, M.E., Rehn, T.: A computational comparison of symmetry han-

dling methods for mixed integer programs. Mathematical Programming
Computation 11(1), 37–93 (2019)

112. Pildes, R.H., Niemi, R.G.: Expressive harms, “bizarre districts,” and vot-
ing rights: Evaluating election-district appearances after Shaw v. Reno.
Michigan Law Review 92(3), 483–587 (1993)

113. Polsby, D.D., Popper, R.D.: The third criterion: Compactness as a pro-
cedural safeguard against partisan gerrymandering. Yale L. & Pol’y Rev.
9, 301 (1991)

114. Polsby, D.D., Popper, R.D.: Ugly: An inquiry into the problem of racial
gerrymandering under the Voting Rights Act. Mich. L. Rev. 92, 652
(1993)

115. Rehfeldt, D., Franz, H., Koch, T.: Optimal connected subgraphs: Formu-
lations and algorithms. Tech. Rep. 20-23, ZIB, Takustr. 7, 14195 Berlin
(2020)

116. Reock, E.C.: A note: Measuring compactness as a requirement of leg-
islative apportionment. Midwest Journal of Political Science 5(1), 70–74
(1961)

117. Ricca, F., Scozzari, A., Simeone, B.: Weighted Voronoi region algorithms
for political districting. Mathematical and Computer Modelling 48(9-10),
1468–1477 (2008)

118. Ricca, F., Scozzari, A., Simeone, B.: Political districting: from classical
models to recent approaches. Annals of Operations Research 204(1),

https://bdistricting.com/2010/
https://bdistricting.com/2010/

42 Hamidreza Validi, Austin Buchanan

271–299 (2013)
119. Ricca, F., Simeone, B.: Local search algorithms for political districting.

European Journal of Operational Research 189(3), 1409–1426 (2008)
120. Salemi, H., Buchanan, A.: Parsimonious formulations for low-diameter

clusters. Mathematical Programming Computation 12(3), 493–528
(2020)

121. Schwartz, S.: An overview of graph covering and partitioning. Tech. Rep.
20-24, ZIB, Takustr. 7, 14195 Berlin (2020)

122. Schwartzberg, J.E.: Reapportionment, gerrymanders, and the notion of
compactness. Minn. L. Rev. 50, 443 (1965)

123. Shen, S., Smith, J.C., Goli, R.: Exact interdiction models and algorithms
for disconnecting networks via node deletions. Discrete Optimization
9(3), 172–188 (2012)

124. Shirabe, T.: A model of contiguity for spatial unit allocation. Geograph-
ical Analysis 37(1), 2–16 (2005)

125. Shirabe, T.: Districting modeling with exact contiguity constraints. Envi-
ronment and Planning B: Planning and Design 36(6), 1053–1066 (2009)

126. Sørensen, M.M.: Facet-defining inequalities for the simple graph parti-
tioning polytope. Discrete Optimization 4(2), 221–231 (2007)

127. Suwal, B., Sun, M., Rule, P.: mggg/GerryChainJulia: v0.1.2 (2020). DOI
10.5281/zenodo.4111000. https://doi.org/10.5281/zenodo.4111000

128. Svec, L., Burden, S., Dilley, A.: Applying Voronoi diagrams to the redis-
tricting problem. The UMAP Journal 28(3), 313–329 (2007)

129. Swamy, R., King, D.M., Jacobson, S.H.: A case for transparency in the
design of political districts (2019). Working paper

130. Swamy, R., King, D.M., Jacobson, S.H.: Multi-objective optimization for
political districting: a scalable multilevel approach (2019). URL http://

www.optimization-online.org/DB FILE/2019/03/7123.pdf. Working
paper

131. Validi, H., Buchanan, A.: Political districting to minimize cut edges
(2022). DOI 10.5281/zenodo.6374373. https://doi.org/10.5281/

zenodo.6374373

132. Validi, H., Buchanan, A., Lykhovyd, E.: Imposing contiguity constraints
in political districting models. Operations Research (2021). To appear

133. Vickrey, W.: On the prevention of gerrymandering. Political Science
Quarterly 76(1), 105–110 (1961)

134. Wang, Y., Buchanan, A., Butenko, S.: On imposing connectivity con-
straints in integer programs. Mathematical Programming 166(1-2), 241–
271 (2017)

135. Williams Jr, J.C.: Political redistricting: a review. Papers in Regional
Science 74(1), 13–40 (1995)

136. Xiao, M.: Simple and improved parameterized algorithms for multiter-
minal cuts. Theory of Computing Systems 46(4), 723–736 (2010)

137. Xiao, M.: Linear kernels for separating a graph into components of
bounded size. Journal of Computer and System Sciences 88, 260–270
(2017)

https://doi.org/10.5281/zenodo.4111000
http://www.optimization-online.org/DB_FILE/2019/03/7123.pdf
http://www.optimization-online.org/DB_FILE/2019/03/7123.pdf
https://doi.org/10.5281/zenodo.6374373
https://doi.org/10.5281/zenodo.6374373

Political districting to minimize cut edges 43

138. Young, H.P.: Measuring the compactness of legislative districts. Legisla-
tive Studies Quarterly 13(1), 105–115 (1988)

Statements & Declarations

Funding

This material is based upon work supported by the National Science Founda-
tion under Grant No. 1942065.

Conflict of interest

The authors declare that they have no conflict of interest.

Availability of data and materials

The input data and computational results are publicly available on GitHub at
https://github.com/hamidrezavalidi/Political-Districting-to-Mini

mize-Cut-Edges/tree/master/data and https://github.com/hamidreza

validi/Political-Districting-to-Minimize-Cut-Edges/tree/master

/results, respectively.

Code availability

The code is publicly available on GitHub at https://github.com/hamidre

zavalidi/Political-Districting-to-Minimize-Cut-Edges.

https://github.com/hamidrezavalidi/Political-Districting-to-Minimize-Cut-Edges/tree/master/data
https://github.com/hamidrezavalidi/Political-Districting-to-Minimize-Cut-Edges/tree/master/data
https://github.com/hamidrezavalidi/Political-Districting-to-Minimize-Cut-Edges/tree/master/results
https://github.com/hamidrezavalidi/Political-Districting-to-Minimize-Cut-Edges/tree/master/results
https://github.com/hamidrezavalidi/Political-Districting-to-Minimize-Cut-Edges/tree/master/results
https://github.com/hamidrezavalidi/Political-Districting-to-Minimize-Cut-Edges
https://github.com/hamidrezavalidi/Political-Districting-to-Minimize-Cut-Edges

44 Hamidreza Validi, Austin Buchanan

Appendix A – More Contiguity Constraints

Below, we give a single-commodity flow (SCF) model for the Hess base model (2).
It is inspired by the SCF model of Hojny et al. [72] which uses a flow variable
fij for each arc (i, j) from the directed graph H = (V,A).

f(δ−(j)) − f(δ+(j)) = 1 −
∑

i∈V

xij ∀j ∈ V (14a)

f(δ−(j)) ≤ M(1 − xjj) ∀j ∈ V (14b)

fij + fji ≤ M(1 − ye) ∀e = {i, j} ∈ E (14c)

fij ≥ 0 ∀(i, j) ∈ A. (14d)

Constraints (14a) enforce that if vertex j is not assigned to itself, then it
should consume one unit of flow; otherwise, j should send out one unit of flow
for every other vertex i that is assigned to j. Constraints (14b) disallow flow
into vertices j that are assigned to themselves. Constraints (14c) disallow flow
across cut edges. In our experiments, we set M by equation (4).

Next, we give a multi-commodity flow (SHIR) model for the Labeling base
model (1) inspired by Shirabe [104, 124, 125]. It uses binary root variables rij
that equal one when vertex i ∈ V is assigned to district j ∈ [k]. It also uses a
flow variable f j

uv for each district (commodity) j ∈ [k] and each arc (u, v) ∈ A.
We also define a variable gji for each vertex i ∈ V and district j ∈ [k] indicating
how much flow of commodity j is generated at (root) vertex i ∈ V .

∑

i∈V

rij = 1 ∀j ∈ [k] (15a)

rij ≤ xij ∀i ∈ V, ∀j ∈ [k] (15b)

gji ≤ (M + 1)rij ∀i ∈ V, ∀j ∈ [k] (15c)

f j(δ−(i)) − f j(δ+(i)) = xij − gji ∀i ∈ V, ∀j ∈ [k] (15d)

f j(δ−(i)) ≤ M(xij − rij) ∀i ∈ V, ∀j ∈ [k] (15e)

gji ≥ 0 ∀i ∈ V, ∀j ∈ [k] (15f)

f j
uv ≥ 0 ∀(u, v) ∈ A, ∀j ∈ [k] (15g)

rij ∈ {0, 1} ∀i ∈ V, ∀j ∈ [k]. (15h)

Constraints (15a) force each district j to have one root. Constraints (15b)
state that each vertex i cannot root a district j to which it does not belong.
Constraints (15c) ensure that flow of commodity j ∈ [k] is only generated at
its root. Constraints (15d) force vertex i to consume one unit of commodity j
flow if it is assigned to district j. Constraints (15e) disallow flow into roots of
districts; they also disallow flow of commodity j ∈ [k] into vertex i if it is not
assigned to district j. Again, we set M by equation (4).

Political districting to minimize cut edges 45

Appendix B – More Experiments with Model (12)

Table 11 Results for model (12) for q ∈ {k, 2k} bins under one-minute and one-hour time-
limits (TL). Times differ slightly from those in Table 4 due to noise between runs.

60-second time-limit 3600-second time-limit
k bins 2k bins k bins 2k bins

state n k |B| time |B| time |B| time |B| time
ME 16 2 13 0.03 13 0.05 13 0.02 13 0.06
NM 33 3 28 0.17 28 0.53 28 0.20 28 0.48
ID 44 2 41 0.05 41 0.20 41 0.03 41 0.19
WV 55 3 48 3.72 48 2.02 48 3.69 48 1.95
LA 64 6 53 30.41 53 36.53 53 30.43 53 36.61
AL 67 7 52 TL 52 TL 52 232.42 52 1,110.05
AR 75 4 64 23.78 64 22.82 64 23.74 64 22.88
OK 77 5 64 20.63 64 TL 64 20.73 64 152.76
MS 82 4 69 TL 69 TL 69 113.11 69 1,020.68
NE 93 3 86 2.31 86 2.87 86 2.36 86 2.91
IA 99 4 85 TL 85 TL 85 141.93 85 1,098.42
KS 105 4 95 12.55 95 16.23 95 12.43 95 16.01
NH 295 2 283 7.44 283 TL 283 7.42 283 353.50
ID 298 2 291 2.55 292 38.10 291 2.59 292 37.84
ME 358 2 349 3.31 349 36.12 349 3.30 349 35.99
WV 484 3 467 TL 464 TL 467 TL 467 TL
NM 499 3 485 TL 482 TL 485 TL 485 TL
NE 532 3 513 TL 510 TL 513 TL 513 TL
UT 588 4 556 TL 552 TL 564 TL 557 TL
MS 664 4 634 TL 633 TL 637 TL 637 TL
AR 686 4 653 TL 653 TL 657 TL 656 TL
NV 687 4 653 TL 651 TL 656 TL 656 TL

46 Hamidreza Validi, Austin Buchanan

Appendix C – Symmetry Handling and Variable Fixing for Labeling

Here, we seek to improve the performance of the Labeling model. Since the
Labeling model is already reasonably small, with just kn variables of the xij

type, our primary aim is to deal with its symmetry. For this, we will apply an
extended formulation for partitioning orbitopes that was proposed by Faenza
and Kaibel [46]. We also experiment with the MIP solver’s own symmetry
handling techniques. Our secondary aim is to reduce the size of the MIP by
extending some of the variable fixing procedures that were developed previ-
ously.

Symmetry handling via partitioning orbitope

Symmetry handling has been a hot topic in integer programming over the last
20 years [96], leading to ideas like isomorphism pruning [92, 93, 94, 95], orbital
branching [108, 109], and orbitopal fixing [75], several of which are now used by
state-of-the-art MIP solvers [111]. Another notable contribution in this area is
the polyhedral study of packing and partitioning orbitopes performed by [76].

Of particular interest to us is the partitioning orbitope, which can be de-
fined as the convex hull of 0-1 matrices with n rows and k columns that have
precisely one “1” in each row and whose columns are sorted lexicographically.
In this way, a partition of V = [n] will have one canonical representation,
eliminating the other k! − 1 alternative representations of the same plan. For
example, consider the districting plan {{5, 2}, {6}, {4, 1, 3}}. The district {5, 2}
would be represented by the column vector (0, 1, 0, 0, 1, 0)T , the district {6}
by (0, 0, 0, 0, 0, 1)T , and the district {4, 1, 3} by (1, 0, 1, 1, 0, 0)T . Sorting these
column vectors lexicographically (decreasing) gives the canonical matrix rep-
resentation for the Labeling variables:

x =




1 0 0
0 1 0
1 0 0
1 0 0
0 1 0
0 0 1



.

In their work, Kaibel and Pfetsch [76] identify complete linear inequal-
ity descriptions of the packing and partitioning orbitopes. While the descrip-
tions have exponentially many inequalities, the separation problem is linear-
time solvable. Later, Faenza and Kaibel [46] give extended formulations for
them that have size O(kn), making the results easier to employ computation-
ally. However, to our knowledge, no one has used them. In our emails with
symmetry-handling experts Faenza [46] and Pfetsch [73, 75, 76, 111], neither
of them could recall anyone conducting experiments with these extended for-
mulations [45, 110]. In our experiments, we compare the extended formulation
with Gurobi’s symmetry handling techniques, which include orbital fixing [1].

Political districting to minimize cut edges 47

Below, we give the partitioning orbitope extended formulation. We make
some expository changes, e.g., we do not refer to network flows. We also add
intuitive interpretations for the variables that were not originally provided [46].

First, we identify a root for each district, given by its smallest indexed
vertex (or, if an ordering is used, the district’s earliest vertex in the ordering).

rij =

{
1, if vertex i ∈ V is the root of district j ∈ [k],

0, otherwise.

For the example given above, the first district {4, 1, 3} is rooted at vertex 1,
the second district {5, 2} is rooted at vertex 2, and the third district {6} is
rooted at vertex 6. With the root variables rij , this means that r11 = r22 =
r63 = 1, while the others are zero. These same root variables can be used
when imposing contiguity constraints. Other auxiliary variables keep track of
certain recursions in the model.

sij =

{
1, if vertex i ∈ V is assigned to a district from set {j, j + 1, . . . , k},

0, otherwise.

wij =

{
1, if root of district j ∈ [k] belongs to set {1, 2, . . . , i},

0, otherwise.

uij =





1, if root of district j ∈ [k] belongs to {1, 2, . . . , i− 1} and

root of district j + 1 belongs to {i + 1, i + 2, . . . , n},

0, otherwise.

The extended formulation for the partitioning orbitope uses the following
constraints, where all out-of-range boundary values si,k+1 and w0,j and ri,k+1

and un+1,j equal zero, except for rn+1,k+1 ≡ 1.

xij = sij − si,j+1 ∀i ∈ V, ∀j ∈ [k] (16a)

rij = wij − wi−1,j ∀i ∈ V, ∀j ∈ [k] (16b)

rij ≤ xij ∀i ∈ V, ∀j ∈ [k] (16c)

sij ≤ wij ∀i ∈ V, ∀j ∈ [k] (16d)

rij + uij = ri+1,j+1 + ui+1,j ∀i ∈ V, ∀j ∈ [k] (16e)

r1,1 = 1 (16f)

rij , uij , wij , sij ∈ {0, 1} ∀i ∈ V, ∀j ∈ [k]. (16g)

Constraints (16a) relate the x and s variables, ensuring that vertex i is assigned
to district j precisely when it is assigned to a district number in {j, j+1, . . . , k}
but not in {j + 1, . . . , k}. Constraints (16b) relate the r and w variables,
ensuring that vertex i roots district j precisely when district j’s root belongs
to {1, 2, . . . , i} but not to {1, 2, . . . , i − 1}. Constraints (16c) ensure that the
root of a district belongs to said district. Constraints (16d) ensure that if vertex

48 Hamidreza Validi, Austin Buchanan

i is assigned to a district in {j, j + 1, . . . , k}, then district j is rooted at i or
a vertex before i. Constraints (16e) are crucial “flow-balance” constraints in
the original network interpretation. They impose that, if vertex i roots district
j (rij = 1), then vertex i + 1 either roots district j + 1 or lies in the space
“between” the roots of districts j and j + 1 (ri+1,j+1 + ui+1,j = 1). The same
holds if vertex i lies between the roots of districts j and j + 1 (uij = 1).
Constraint (16f) initiates the flow that will be consumed via rn+1,k+1 ≡ 1. We
remark that Θ(k2) many of the variables will always equal zero (analogous to
diagonal-fixing) and need not be created [46]. We also relax u, s, and w to be
nonnegative continuous variables.

In Appendix D, we will see that model (16) sometimes reduces the number
of branch-and-bound nodes by 100,000 and the solve time by 1,000 seconds.

L-fixing, U-fixing, and Z-fixing

Earlier, we proposed L-fixing for the Hess model. Here we propose essentially
the same idea but for the Labeling model. One important condition is that we
have root variables rij like those used in the partitioning orbitope extended
formulation (16) and in the SCF model for imposing contiguity (5). As before,
the choice of vertex ordering (v1, v2, . . . , vn) is important, as it affects the
resulting vertex subsets Si as defined in (10). To maximize the number of
fixings, we again prefer orderings that place a solution to problem (11) at the
back. For this task, we use the same procedures outlined in Subsection 6.3.
Now, if p(Si) < L, then vertex i cannot root a feasible district, meaning that
it is safe to fix rij = 0 for all j ∈ [k].

More generally, suppose that a feasible solution B to problem (11) is placed
at the back of the ordering, i.e., B = {vq, vq+1, . . . , vn}. Moreover, suppose that
the districts are sorted lexicographically, as in the partitioning orbitope idea.
Consider a vertex i = vq−1. If it were to root a district, then it must root
district k, and we can fix rij = 0 for j ≤ k − 1. More generally, for vertex
i = vq−t we can fix rij = 0 for all j ≤ k − t. We call this L-fixing.

We also can extend U -fixing to the Labeling context. Recall that the first
vertex in the ordering, v = v1, must root the first district, i.e., rv1 = 1,
by the partitioning orbitope idea. Other vertices u that are far from v, with
distG,p(v, u) > U , cannot belong to this district, and we can safely fix xu1 = 0.
Further, supposing that v2 is far from v1 (as is often true), then v2 and v1 can-
not belong to the same district, and v2 must be the root of district 2. Again, we
can fix xu2 = 0 for vertices u that are far from v2. These arguments continue,
giving the following U -fixing procedure. In it, we use notation for the distance

Political districting to minimize cut edges 49

from vertex v to vertex subset S, distG,p(v, S) = min{distG,p(v, u) | u ∈ S},
with convention that distG,p(v, ∅) = ∞.

– for j = 1, 2, . . . , k do
– compute vertex-weighted distances from vj , i.e., distG,p(vj , ·)
– if distG,p(vj , {v1, v2, . . . , vj−1}) ≤ U , then break
– fix rvj ,j = 1 and xvj ,j = 1 and xvj ,t = 0 for t ∈ [k] \ {j}
– fix rij = 0 for other vertices i ∈ V \ {vj}
– for u ∈ {vj+1, vj+2, . . . , vn} fix xuj = 0 if distG,p(vj , u) > U .

Finally, we can fix some z variables. That is, for a constraint xuj−xvj ≤ zje
of the Labeling model, if we have fixed xuj = 0 or xvj = 1, then we can fix zje
to zero. Also, if we have fixed xuj = 1 and xvj = 0, then we can fix zje to one.

Table 12 reports the performance of the fixing procedures for the Labeling
model. The results show that most r variables are fixed, with 88% or more
fixed on county-level instances, and 96% or more fixed on tract-level instances.
Meanwhile, few x variables are fixed: at most 34% on the county-level instances
and 0% on the tract-level instances. Similarly, few z variables are fixed: at most
29% on county-level instances, and 0% or 1% on tract-level instances. This is
expected given the small number of x variables that were fixed.

Table 12 Number and percentage of fixings for Labeling model with contiguity.

rij xij zjuv
state n k # % # % # %
ME 16 2 28 88 2 6 5 7
NM 33 3 93 94 34 34 69 29
ID 44 2 84 95 2 2 5 2
WV 55 3 151 92 4 2 14 4
LA 64 6 353 92 38 10 80 8
AL 67 7 426 91 111 24 287 24
AR 75 4 269 90 7 2 20 3
OK 77 5 359 93 97 25 250 26
MS 82 4 291 89 7 2 20 2
NE 93 3 271 97 11 4 13 2
IA 99 4 356 90 7 2 17 2
KS 105 4 409 97 17 4 34 3
NH 295 2 577 98 2 0 7 0
ID 298 2 588 99 2 0 11 1
ME 358 2 706 99 2 0 8 0
WV 484 3 1,418 98 4 0 18 0
NM 499 3 1,469 98 4 0 24 1
NE 532 3 1,558 98 4 0 13 0
UT 588 4 2,258 96 7 0 37 1
MS 664 4 2,568 97 7 0 23 0
AR 686 4 2,647 96 7 0 23 0
NV 687 4 2,648 96 7 0 42 1

50 Hamidreza Validi, Austin Buchanan

Appendix D – Symmetry Handling Experiments with Labeling Model

Table 13 Comparison of symmetry handling methods for Label-LCUT.

default symmetry aggressive symmetry orbitope
state n k #B&B MIP time #B&B MIP time #B&B MIP time
ME 16 2 427 0.12 427 0.17 1080 0.16
NM 33 3 11 0.11 11 0.11 7 0.09
ID 44 2 41 0.11 41 0.11 16 0.12
WV 55 3 3,940 1.78 3,940 1.80 1,785 1.05
LA 64 6 423,363 504.37 423,363 499.04 272,631 387.96
AL 67 7 995,220 1,005.77 995,220 999.32 802,391 1,017.77
AR 75 4 38,142 28.43 38,142 28.49 26,771 23.40
OK 77 5 10,211 8.82 10,211 8.82 9,037 8.50
MS 82 4 77,287 38.83 77,287 38.45 86,016 54.18
NE 93 3 391 0.67 391 0.68 782 1.47
IA 99 4 21,204 27.68 21,204 27.98 19,379 29.18
KS 105 4 5,311 10.15 5,311 10.03 11,565 27.28
NH 295 2 3,760 3.42 3,760 3.44 2,461 3.50
ID 298 2 2,531 2.03 2,531 2.00 563 1.73
ME 358 2 6,061 4.27 6,061 4.33 2,123 2.53
WV 484 3 12,978 140.67 12,978 145.72 12,342 159.04
NM 499 3 14,585 228.20 14,585 230.63 1,703 24.20
NE 532 3 8,337 131.34 8,337 130.46 8,451 163.29
UT 588 4 83,635 TL 83,873 TL 80,652 TL
MS 664 4 57,365 TL 57,588 TL 38,540 TL
AR 686 4 33,883 TL 34,144 TL 19,376 TL
NV 687 4 46,361 TL 44,986 TL 32,611 TL

Political districting to minimize cut edges 51

Table 14 Comparison of symmetry handling methods for Label-SCF.

default symmetry aggressive symmetry orbitope
state n k #B&B MIP time #B&B MIP time #B&B MIP time
ME 16 2 218 0.09 218 0.11 195 0.11
NM 33 3 1 0.06 1 0.09 1 0.05
ID 44 2 14 0.12 14 0.14 1 0.05
WV 55 3 2,851 1.20 2,851 1.21 1,476 0.83
LA 64 6 636,673 1,264.97 426,993 972.39 265,550 494.32
AL 67 7 808,085 2,782.71 749,042 2,530.60 516,476 1,539.34
AR 75 4 36,091 35.47 36,091 36.55 18,842 30.00
OK 77 5 2,420 3.95 2,420 3.93 2,877 3.92
MS 82 4 90,911 146.70 86,403 146.37 33,435 32.10
NE 93 3 99 0.47 99 0.52 140 0.59
IA 99 4 33,537 54.09 33,537 54.82 23,266 35.64
KS 105 4 6,892 13.25 6,892 13.17 5,989 12.77
NH 295 2 5,574 7.66 5,574 7.84 1,222 2.84
ID 298 2 505 1.56 505 1.55 182 1.00
ME 358 2 102 1.13 102 1.19 131 1.28
WV 484 3 25,274 322.91 25,274 334.10 7,681 153.19
NM 499 3 6,991 119.40 6,991 115.38 5,742 97.74
NE 532 3 16,503 286.07 16,503 272.39 9,179 208.36
UT 588 4 48,727 TL 46,941 TL 43,353 TL
MS 664 4 37,759 TL 33,082 TL 30,272 TL
AR 686 4 20,210 TL 19,848 TL 27,440 TL
NV 687 4 33,816 TL 34,276 TL 33,025 TL

Appendix E – Näıve models with contiguity constraints

Table 16 shows that the näıve Hess and Labeling models remain difficult to
solve when contiguity constraints are imposed.

52 Hamidreza Validi, Austin Buchanan

Table 15 Comparison of symmetry handling methods for Label-SHIR.

default symmetry aggressive symmetry orbitope
state n k #B&B MIP time #B&B MIP time #B&B MIP time
ME 16 2 153 0.08 153 0.09 131 0.11
NM 33 3 1 0.06 1 0.06 1 0.05
ID 44 2 16 0.12 16 0.12 1 0.08
WV 55 3 1,072 0.97 1,072 0.89 1,287 1.19
LA 64 6 70,363 115.63 70,363 114.68 113,081 321.16
AL 67 7 312,635 1,647.99 312,635 1,640.54 225,733 956.30
AR 75 4 26,404 44.08 26,404 43.84 16,177 39.90
OK 77 5 1,903 4.14 1,903 4.12 1,072 3.59
MS 82 4 53,258 71.88 53,258 73.23 47,384 71.10
NE 93 3 104 0.75 104 0.87 62 0.97
IA 99 4 31,080 76.47 31,080 76.44 29,756 78.96
KS 105 4 8,887 28.34 8,887 28.24 8,955 26.95
NH 295 2 1,836 9.77 1,836 9.64 2,184 12.58
ID 298 2 166 1.98 166 1.97 146 1.77
ME 358 2 156 3.13 156 3.02 35 1.69
WV 484 3 4,768 157.27 4,768 157.36 13,099 335.30
NM 499 3 1,738 68.44 1,738 68.50 1,160 62.83
NE 532 3 13,507 443.71 13,507 443.44 7,333 393.22
UT 588 4 19,933 TL 19,929 TL 16,096 TL
MS 664 4 9,370 TL 9,386 TL 8,000 TL
AR 686 4 4,837 TL 4,799 TL 3,432 TL
NV 687 4 7,044 TL 6,996 TL 8,435 TL

Table 16 Solve times under a 3600-second limit for naive models in Hess and Labeling
contexts with None, LCUT, SCF, and SHIR contiguity constraints.

Contiguity in the Hess context Contiguity in the Labeling context
state n k None LCUT SCF SHIR None LCUT SCF SHIR
ME 16 2 2.32 3.62 4.23 5.34 0.07 0.34 0.22 0.19
NM 33 3 526.52 210.09 148.12 504.38 0.19 0.33 0.55 0.49
ID 44 2 652.21 621.53 742.77 2,991.62 0.14 0.28 0.22 0.19
WV 55 3 TL TL TL TL 2.24 31.80 19.52 17.31
LA 64 6 TL TL TL TL TL TL TL TL
AL 67 7 TL TL TL TL TL TL TL TL
AR 75 4 TL TL TL TL 203.85 TL 571.56 327.89
OK 77 5 TL TL TL TL 132.88 TL 305.67 276.69
MS 82 4 TL TL TL TL 457.61 TL 2,220.49 1,020.30
NE 93 3 TL TL TL TL 2.86 11.09 3.72 35.71
IA 99 4 TL TL TL TL 716.04 TL 1,429.14 891.69
KS 105 4 TL TL TL TL 425.73 TL 2,234.15 1,352.67

	Introduction
	Background and Literature Review
	Test Instances and Computational Setup
	Extended Objective
	Heuristic
	Symmetry Handling and Variable Fixing for Hess Model
	Final Computational Experiments
	Conclusion and Future Work

