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Abstract. When partitioning a state into political districts, a common criterion is that political subdivisions like counties should

not be split across multiple districts. This criterion is encoded into most state constitutions and is sometimes enforced quite strictly

by the courts. However, map drawers, courts, and the public typically do not know what amount of splitting is truly necessary, even

to satisfy basic criteria like contiguity and population balance. In this paper, we provide answers for all congressional, state senate,

and state house districts in the USA using 2020 census data. Our approach is based on integer programming. The associated codes

and experimental results are publicly available on GitHub.
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1. Introduction

When partitioning a state into political districts, traditional redistricting principles dictate that

districts should have nearly equal populations, be contiguous on the map, and have reasonably

compact shapes. Another important criterion is that political subdivisions such as counties, cities,

and towns should not be split across multiple districts. This criterion is encoded into most state

constitutions (NCSL 2021) and is sometimes enforced quite strictly. Prominent examples include

Texas’s County Line Rule and North Carolina’s Whole County Provision which apply to legislative

districting (i.e., for state house and/or state senate), as well as Iowa’s and West Virginia’s insistence

on keeping all counties whole in their congressional districting plans.

When redistricting laws are violated, courts can intervene. For example, in 2018 the Pennsylvania

Supreme Court ordered new maps to be drawn after finding their existing congressional districting

plan to be an unconstitutional partisan gerrymander that favored Republicans (League of Women

Voters of Pennsylvania v. the Commonwealth of Pennsylvania). The court remarked that the enacted

plan divided 28 of the 67 counties and further specified how many times each individual county

was split (with 37 county splits in total). The court then ordered the state legislature to adopt a new

map that does “not divide any county, city, incorporated town, borough, township, or ward, except

where necessary to ensure equality of population.” When the legislature failed to do so, the court
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adopted its own map, with assistance from Stanford Law Professor Nate Persily. The court pointed

out that its remedial plan “splits only 13 counties,” with four counties split twice and nine counties

split once, giving a total of 17 county splits. The overturned and court-mandated maps are shown

in Figure 1. Observe the drastically different splitting patterns around Philadelphia and Pittsburgh

in the southeastern and southwestern portions of the state, respectively.

Figure 1 Pennsylvania’s overturned and court-mandated congressional districts.

In another example, New York’s congressional districts and state senate districts were overturned

in 2022, with the state’s highest court ruling that they were Democratic partisan gerrymanders in

violation of the New York Constitution (Harkenrider v. Hochul). The court appointed Jonathan

Cervas, a political scientist and Post-Doctoral Fellow at Carnegie Mellon University, as Special

Master to redraw the districts. Cervas paid special attention to preserving political subdivisions,

reporting that the old congressional map split 34 counties a total of 56 times, while the new map

split 16 counties a total of 26 times (Cervas 2022). In fact, Cervas went on to write that “while I

was quite successful in limiting the number of counties and cities that were split, some splits are

simply inevitable. . . I can assure you that if yours was split it was not because of any kind of animus

but was essentially due to the mathematical necessity of splitting some units.” (Emphasis added.)

The two maps are shown in Figure 2.

When is a county split truly necessary? Sometimes an explanation is straightforward. For example,

each of New York’s congressional districts must have a population near 776,971. Meanwhile, New

York County (Manhattan) is much more populous and cannot be kept whole. Further, it must be

divided across at least three districts (i.e., split at least twice), because its population sufficiently

exceeds 2× 776,971. Indeed, the court-mandated plan splits it twice.
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Figure 2 New York’s overturned and court-mandated congressional districts.

However, this simple reasoning cannot be used to justify all necessary county splits. For example,

the court-mandated plan splits Orleans County in the northwest of the state, despite it having

a small population of roughly 40,000. It is not necessary to split Orleans County per se, but a

split is necessary somewhere in its vicinity. The reason is that neighboring Monroe County has a

population sufficiently below 776,971, and adding any one of Monroe’s neighbors to it would make

its district’s population too large. In a synthetic, but illustrative example, consider a hypothetical

state with three counties, each having 100 people, arranged in a triangle. When dividing this state

into two 150-person districts, no specific county must be split, nevertheless we cannot keep all

counties whole. Thus, it may be hopeless to justify any particular county split. A more reasonable

goal is to justify the total number of county splits. So, we may ask, what is the minimum number of

county splits possible in a contiguous and population-balanced plan? While a few generic answers

to this optimization problem have been proposed in the literature, we find none of them to be wholly

satisfactory, as discussed below.

Redistricting folklore states that when drawing 𝑘 districts, it suffices to have just 𝑘 − 1 county

splits, i.e., 𝑘 − 1 is an upper bound on the minimum number of county splits. Some researchers

have further said that 𝑘 − 1 county splits is the right number, i.e., that 𝑘 − 1 is “highly probable”

to be a lower bound, particularly if district populations are not permitted to differ by more than

one person (Nagle 2022). This 𝑘 − 1 figure is stated on popular websites like Dave’s Redistricting

App (DRA 2023) and can be found in research papers (Cervas and Grofman 2020, McCartan and
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Imai 2023) and expert testimony (Cervas 2022). In fact, in the 2020 round of redistricting, 14 states

drew their congressional districts to have 𝑘 − 1 county splits (Nagle 2022). However, we will see

that 𝑘 − 1 is neither a lower nor upper bound on the minimum number of county splits.

Another solution to the minimum county splits problem was recently proposed by Carter et al.

(2020). They state that the minimum number of county splits equals the number of districts minus

the maximum number of county clusters, “with the exception of rare circumstances which impact

the optimal districting.” To understand this claim, let us introduce some notation. Denote by 𝐶 the

set of counties, and let 𝐺𝐶 be the county-level contiguity graph, which has a vertex for each county

and two vertices are connected by an edge if the associated counties are adjacent on the map. For

population balance, we suppose that each district should have a population of at least 𝐿 and at most

𝑈. The population of county 𝑐 is denoted by 𝑝𝑐, and the population of a subset of counties 𝑆 is

indicated by the shorthand 𝑝(𝑆) :=
∑

𝑐∈𝑆 𝑝𝑐.

A county clustering decomposes a districting instance into a collection of miniature districting

instances. Each miniature districting instance is defined by a subset of counties and a positive

integer size indicating how many districts to build from it. A formal definition follows.

DEFINITION 1. A county clustering is a partition (𝐶1,𝐶2, . . . ,𝐶𝑞) of the counties along with

associated cluster sizes (𝑘1, 𝑘2, . . . , 𝑘𝑞) such that:

1. the cluster sizes (𝑘1, 𝑘2, . . . , 𝑘𝑞) are positive integers that sum to 𝑘;

2. each cluster 𝐶 𝑗 is contiguous, i.e., induces a connected subgraph of 𝐺𝐶 ;

3. each cluster 𝐶 𝑗 satisfies population balance, i.e., 𝐿𝑘 𝑗 ≤ 𝑝(𝐶 𝑗 ) ≤𝑈𝑘 𝑗 .

The maximum county clustering problem is an optimization problem that seeks a county clustering

with a maximum number of clusters (i.e., a maximum county clustering).

To illustrate, consider the fictional state of Splitigan in Figure 3. It has five rectangular counties

(Alpha, Beta, Gamma, Delta, Epsilon) which are to be divided into four districts of equal population.

One possible county clustering is the trivial clustering in which all counties are placed in one cluster

𝐶1 of size 𝑘1 = 4 and population 𝑝(𝐶1) = 16. Alternatively, we may place Gamma County in one

cluster 𝐶1 of size 1 and population 𝑝(𝐶1) = 4, and the remaining counties in another cluster 𝐶2 of

size 3 and population 𝑝(𝐶2) = 12; this is maximum, as no county clustering has more clusters.

Figure 3 also shows two possible districting plans for Splitigan in dashed lines. The plan on

the left pairs each of the exterior counties (Alpha, Beta, Delta, and Epsilon) with one tract from

Gamma County in the center. Thus, Gamma County is divided across four districts (i.e., it is split
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Figure 3 Two possible districting plans for the fictional state of Splitigan. Rectangles represent counties, nodes represent tracts,

and their populations are given inside the nodes.

three times), and the others are split zero times, for a total of three county splits. Meanwhile, the

plan on the right keeps Alpha, Gamma, and Delta Counties whole, and splits Beta and Epsilon

Counties once each, for a total of two county splits. This is the minimum number of county splits

possible. So, in this case, Carter et al.’s theorem does hold: the minimum number of county splits

(2) indeed equals the number of districts (4) minus the maximum number of county clusters (2).

Intuitively, why should Carter et al.’s theorem hold? The idea is as follows. Identify a maximum

number of county clusters (𝐶1,𝐶2, . . . ,𝐶𝑞) with associated cluster sizes (𝑘1, 𝑘2, . . . , 𝑘𝑞), and con-

sider each county cluster 𝐶 𝑗 as a miniature districting instance. If redistricting folklore holds, then

we can divide the cluster 𝐶 𝑗 into 𝑘 𝑗 districts using 𝑘 𝑗 − 1 county splits. Summing over 𝑞 clusters

gives (𝑘1 − 1) + (𝑘2 − 1) + · · · + (𝑘𝑞 − 1) = 𝑘 − 𝑞 county splits. In particular, this decomposition

works for Splitigan; the first cluster 𝐶1 = {𝛾} already has size 𝑘1 = 1 giving a district with 𝑘1−1 = 0

county splits, while the second cluster 𝐶2 = {𝛼, 𝛽, 𝛿, 𝜀} can be divided into 𝑘2 = 3 districts using

𝑘2 − 1 = 2 county splits.

Unfortunately, the folklore 𝑘 − 1 result does not always hold. In a footnote of their appendix,

Carter et al. (2020) give a counterexample in which one of the counties has zero population. In a

more realistic example, consider the county-level graph in Figure 4 with the same claw topology.

Here, the population of each county is given inside its node, and the task is to build 𝑘 = 2 districts,

each with population between 𝐿 = 95 and 𝑈 = 105 in order to satisfy a ±5% deviation. Observe

that at least one of the leaf counties must be split, since otherwise all three would be kept whole,

forcing two of them to be in the same (overpopulated) district. Each district can take at most 55



Shahmizad and Buchanan: Political districting to minimize county splits
6

people from this leaf county, so both districts will need to extend into the hub county, splitting it

as well. So, at least two counties must be split, and this is more than 𝑘 − 1. This is true irrespective

of how counties are made up of census tracts or blocks. Later, we will extend this example to show

that arbitrarily many county splits might be required, many more than 𝑘 − 1.

35
55

55
55

Figure 4 A claw instance that requires more than 𝑘 − 1 county splits.

Fortunately, half of Carter et al.’s theorem holds without the “except in rare circumstances”

caveat. That is, the minimum number of county splits is always at least the number of districts minus

the maximum number of county clusters. For example, in the claw instance, the maximum number

of county clusters is one, and indeed the minimum number of county splits is at least 𝑘 − 1 = 1.

This relationship between a minimization problem and a maximization problem is analogous to

optimization duality and motivates us to define weak split duality and strong split duality.

DEFINITION 2. A districting instance exhibits weak split duality if the minimum number of county

splits is at least the number of districts minus the maximum number of county clusters. It exhibits

strong split duality if equality also holds.

For example, Splitigan satisfies both weak and strong split duality, while the claw instance only

satisfies weak split duality.

In light of this discussion, we seek to answer the following questions. For 2020 census data, what

is the minimum number of county splits required in a contiguous and population-balanced plan for

each state and for each type of districting (congressional, state senate, state house)? How does this

compare to the enacted plans? How often does strong split duality hold in practice? How should

we solve the maximum county clustering problem and the minimum county splits problem? Is it

true, as Nagle (2022) states, that forcing districts to satisfy a 1-person deviation makes it “highly

probable that the minimum number of county splits is uniquely given as the number of districts

minus one”? Or, as Autry et al. (2021) posit that “it is reasonable to assume that there is no subset

of counties that perfectly can accommodate a subset of the congressional districts. . . [which] may

be used to demonstrate that 𝑘 − 1 county splits is optimal”? Further, can we answer these questions

in ways that are transparent and understandable by the public and the courts?
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Outline. Section 2 provides background on political districting criteria, algorithms, terminology,

and notation. Section 3 proves weak split duality and shows that the split duality gap can be

arbitrarily large. However, we will later see that every one of our test instances, across all states

and district types, satisfies strong split duality. Section 4 proposes an approach for solving the

minimum county splits problem. The first step, Cluster, finds a maximum number of county clusters

(𝐶1,𝐶2, . . . ,𝐶𝑞) with associated sizes (𝑘1, 𝑘2, . . . , 𝑘𝑞) using integer programming techniques. By

weak split duality, this provides a lower bound 𝑘 − 𝑞 on the minimum number of county splits. The

second and third steps, Sketch and Detail, use integer programming techniques to find a detailed

districting plan for each cluster 𝐶 𝑗 with 𝑘 𝑗 − 1 county splits. Ultimately, this provides a districting

plan for the entire state with (𝑘1 − 1) + (𝑘2 − 1) + · · · + (𝑘𝑞 − 1) = 𝑘 − 𝑞 county splits, matching

the bound from weak split duality and thus proving optimality. Section 5 applies the approach to

every state and district type. We find that strong split duality holds on these real-life instances,

empirically supporting a claim of Carter et al. (2020). However, contrary to Nagle (2022) and Autry

et al. (2021), most real-life districting instances, including all of our instances with more than 30

counties, admit nontrivial county clusterings under 1-person deviation. We conclude in Section 6.

2. Background and Literature Review

In the USA, political districts are redrawn every ten years, after the census has been conducted.

The resulting populations determine how the 435 seats in the US House of Representatives will

be divided amongst the states, a process called reapportionment (Balinski and Young 2010). Then,

each state must be divided into the appropriate number of congressional districts. After the 2020

census, the least-populous states received one seat, while the most-populous state (California)

received 52 seats. Additionally, 49 state governments have two legislative bodies (upper and lower),

often referred to as their state senate and state house (or general assembly), that require the drawing

of legislative districts for their elections. The remaining state, Nebraska, only has a state senate. In

these state legislatures, the number of seats and districts varies, with between 13 and 67 state senate

districts and between 30 and 204 state house districts (Ballotpedia 2023). Unlike congressional

districts, which elect one person, some legislative districts are multi-member (e.g., each of Arizona’s

30 House districts elects two representatives). So, from now on, we will typically refer to the number

of districts, and not the number of seats.

Congressional and legislative districts must satisfy a number of state and federal laws. For

example, after the “one-person, one-vote” revolution of the 1960s, districts must have roughly equal
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populations, generally exhibiting less than a 1% population deviation for congressional districts

and less than 10% for legislative districts (Hebert et al. 2010, Davis et al. 2019). These population

balance constraints are not numerically specified in federal law, but instead have emerged from

federal court cases as a consequence of Article I, Section 2 of the US Constitution and the Equal

Protection Clause of the 14th Amendment, beginning with landmark Supreme Court cases like

Baker v. Carr (1962), Wesberry v. Sanders (1964), and Reynolds v. Sims (1964). The Voting Rights

Act of 1965 and the Equal Protection Clause of the 14th Amendment place federal restrictions on

racial gerrymandering (Hebert et al. 2010, Davis et al. 2019), see the landmark Supreme Court

cases Thornburg v. Gingles (1986) and Shaw v. Reno (1993). The US Supreme Court decided in

Rucho v. Common Cause (2019) and Lamone v. Benisek (2019) that partisan gerrymandering, while

undemocratic, lies outside the scope of the federal courts.

Essentially all other districting laws are state laws and thus vary across the country. They often

codify traditional redistricting principles like contiguity, compactness, and the preservation of

counties and other political subdivisions. In recent years, some states have passed redistricting

reforms, including the use of independent redistricting commissions to draw maps (instead of state

legislatures) and the requirement to abide by additional criteria like promoting competitiveness,

proportionality, or partisan fairness (NCSL 2021).

State law sometimes conflicts with federal law. Notably, many states have strict rules about the

preservation of political subdivisions that, if enforced, would violate federal case law regarding

population balance. For example, Wake County in North Carolina had a population in 2020 that

exceeded one million people, making it significantly larger than that of an ideal congressional

district (745,671), state senate district (208,788), or state house district (86,995). Meanwhile, the

Whole County Provision of North Carolina’s constitution (Article II, Sections 3 & 5) states that

“No county shall be divided in the formation of a [legislative] district.” These legal contradictions

have led to court battles on how to interpret these state laws when they conflict with federal law,

see Stephenson v. Bartlett (2002) which went before North Carolina’s Supreme Court.

Many reasons have been proposed to keep political subdivisions whole, or to minimize the extent

to which they are split. We have already seen that many states require the preservation of political

subdivisions by law. Motivations for these laws include: simplifying election administration, making

it easier for voters to know their representative, empowering voters to elect candidates that will

represent their community’s interests, and obstructing the most extreme partisan gerrymandering

efforts (Gladkova et al. 2019, Wachspress and Adler 2021).
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After deciding that political subdivisions should be preserved, one of the next questions is how

to quantify splitting, prompting several different splitting scores (Becker and Gold 2022). Few state

laws actually specify which ones to use, but the most common scores are the number of split counties

and the number of county splits. They are used by Dave’s Redistricting (DRA 2023), the Redis-

tricting Report Card of the Princeton Gerrymandering Project (Princeton Gerrymandering Project

2023), and Harvard’s ALARM Project (McCartan et al. 2022a,b). Several more complicated scores

exist in the literature (Gladkova et al. 2019, Wachspress and Adler 2021, Becker and Gold 2022),

like pieces, naked boundary length, Pennsylvania fouls, effective splits, split pairs, and various

entropy-based and population-weighted scores. These scores can guide redistricting officials when

drawing maps, can be used to challenge bad maps in court, and can be used to mobilize members

of a political subdivision to speak up when they are being divided unnecessarily (Wachspress and

Adler 2021). For more information about redistricting, we refer the reader to the books and surveys

of Grofman (1985), Hebert et al. (2010), Bullock III (2010), Levitt (2010), Davis et al. (2019),

Duchin and Walch (2022).

2.1. Computational Techniques for Redistricting

Districting problems are generally NP-hard (Altman 1997), in part because they can be used to

express instances of the NP-hard Partition problem via the population balance constraints. In the

presence of contiguity constraints, districting remains hard in planar bipartite graphs, even when

each node has one person and each district should have three people (Dyer and Frieze 1985). This

has led researchers to develop greedy construction heuristics (Vickrey 1961, Kim 2019), local

search heuristics (King et al. 2012, 2015, 2018), and those based on metaheuristic frameworks like

tabu search, genetic algorithms, and simulated annealing (Bozkaya et al. 2003, Ricca and Simeone

2008, Altman et al. 2011, Guo and Jin 2011, Liu et al. 2016, Olson 2022, Gutiérrez-Andrade

et al. 2019). There are also many different generalizations of Voronoi diagrams (Cohen-Addad

et al. 2018, Levin and Friedler 2019, Miller 2007, Ricca et al. 2008, Svec et al. 2007). For more

on heuristic approaches to districting, we refer the reader to the surveys of Ricca et al. (2013),

Goderbauer and Winandy (2018), Becker and Solomon (2022).

In the past decade, a new area of computational districting has arisen called ensemble analysis,

where the idea is to generate a huge collection of redistricting plans so that proposed or enacted

plans can be placed in the context of the distribution of possible plans. Many early approaches were

based on a Markov chain Monte Carlo framework, where an algorithm repeatedly and randomly
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moved from a districting plan to a neighboring plan (Adler and Wang 2019, Cho and Liu 2018,

DeFord and Duchin 2019, Fifield et al. 2015), often based on search neighborhoods like “flip”

where a single node on the boundary of two districts is flipped to the other district. One criticism

of this approach is that the flip neighborhood makes small changes and may require a huge number

of iterations to adequately explore the distribution of possible plans. This led to larger search

neighborhoods like recombination (DeFord et al. 2021) which repeatedly merges two (or more)

districts, draws a random spanning tree on their nodes, and splits the tree into districts by removing

one (or more) edges. More recent approaches (McCartan and Imai 2023, Autry et al. 2021) aim

to generate collections of districting plans drawn randomly from an explicit target distribution,

making the approaches more credible than previous approaches when labeling proposed or enacted

plans as (gerrymandered) outliers. Many ensemble approaches have had trouble dealing with (hard)

constraints on county splitting and (if at all) try to capture them with “soft” constraints (penalties)

with poor results. For example, Herschlag et al. (2020) find that their ensemble had a median of 34

split counties when applied to North Carolina congressional districting, much larger than the 2016

remedial plan (13 split counties) and 2019 plan (12 split counties).

The desire to limit county splits has prompted some of the most recent work in ensemble

approaches (Autry et al. 2021, McCartan and Imai 2023). For example, the sequential Monte Carlo

algorithm of McCartan and Imai (2023) is designed to produce at most 𝑘 − 1 county splits, where

𝑘 is the number of districts to draw. It works by repeatedly drawing a random spanning tree in (a

subgraph of) graph 𝐺 and then carving off a district by deleting one of the tree’s edges. If there is no

suitable edge to delete that would carve off a population-balanced district, a new random spanning

tree is generated. Each iteration of this procedure introduces at most one county split. So, after 𝑘 −1

iterations, we have carved off 𝑘 − 1 districts and introduced 𝑘 − 1 county splits, with what remains

constituting the final district. Presumably, this procedure would fail on instances that require 𝑘 or

more county splits, as it would eventually get stuck in an infinite loop drawing new spanning trees

over and over in search of an edge to delete to carve off the next district.

In the integer programming literature, there are many optimization models for political districting

and graph partitioning (Ricca et al. 2013). Many of them are inspired by the model of Hess et al.

(1965), which is a constrained 𝑘-median model with variables of the form 𝑥𝑖 𝑗 that equal one

when geographic unit 𝑖 is assigned to (the district centered at) geographic unit 𝑗 ; for example,

see Oehrlein and Haunert (2017), Alès and Knippel (2020), Swamy et al. (2022). Thus, the number

of variables in these models grows (at least) quadratically in the number 𝑛 of geographic units.
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When the geographic units are counties, these models can often be solved directly, but may require

sophisticated variable fixing procedures when dealing with more granular units (Validi et al. 2022).

Some other models are based on labeling or assignment variables of the form 𝑥𝑖 𝑗 that equal one

when geographic unit 𝑖 is assigned to district number 𝑗 ∈ [𝑘]; for example, see Ferreira et al. (1996),

Borndörfer et al. (1998), Shirabe (2009), Kim and Xiao (2017), Becker and Solomon (2022), Validi

and Buchanan (2022). Thus, the number of variables in these models grows as 𝑘𝑛, which is typically

much smaller than 𝑛2. However, these models come with a great deal of symmetry which must be

dealt with carefully (Validi and Buchanan 2022). The contiguity constraints must also be imposed

with care to maintain tractability, often through flow-based (Shirabe 2005, 2009) or cut-based

constraints (Carvajal et al. 2013, Wang et al. 2017, Oehrlein and Haunert 2017, Validi et al. 2022).

There are also set partitioning models that have a binary variable for each possible district and have

constraints requiring that each geographic unit is covered exactly once (Garfinkel and Nemhauser

1970). These set partitioning models generally have an exponential number of variables, and may

require the use of column generation to solve their linear programming relaxations (Mehrotra et al.

1998), and branch-and-price to solve the integer programs themselves. Many existing models from

the literature seek compactness as their objective and impose population balance and contiguity

in the constraints (Hess et al. 1965, Mehrotra et al. 1998, Validi et al. 2022, Validi and Buchanan

2022, Belotti et al. 2023). Recent models consider partisan fairness (Swamy et al. 2022, Gurnee

and Shmoys 2021) and minority representation (Arredondo et al. 2021, Belotti et al. 2023).

To our knowledge, there is only one published optimization model from the literature that

explicitly promotes the preservation of political subdivisions, which is due to Birge (1983). The

proposed subdivision-preserving objective function is quadratic and does not correspond to an

established splitting score. Birge found the optimization model too large and unwieldy to solve

and instead used a heuristic. There are also two unpublished technical reports. Motivated by a

court case in Kentucky, Norman and Camm (2003) propose an optimization model for a problem

equivalent to ours. They propose a county-level mixed integer program (MIP), including binary

variables 𝑥𝑖 𝑗 indicating whether a portion of county 𝑖 is assigned to a district seated at county 𝑗

and continuous variables 𝑝𝑖 𝑗 indicating how many people from county 𝑖 are assigned to the district

seated at county 𝑗 . To impose contiguity, their first model requires that assignments can only be

made to adjacent counties (“one-ring adjacency”), which they then relax to counties at most two

hops away (“two-ring adjacency”) in a second model. After observing that their MIPs sometimes

generate non-compact districts, they fix select 𝑥𝑖 𝑗 variables to zero. They report computational
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results for a handful of states, with a 46-county 15-district instance taking 610,800 seconds to solve

using CPLEX 7.5 on an 866-MHz PC.

A more recent, comprehensive study was undertaken by Önal and Patrick (2016). They start with

a Hess-style MIP where census tracts as taken as the basic geographic unit, and the binary variable

𝑥𝑖 𝑗 indicates whether tract 𝑖 is assigned to (the district rooted at) tract 𝑗 . They apply their model to

Illinois for 2000 and 2010 census data. To deal with the large number of census tracts (𝑛 ≈ 3,000),

they propose heuristic techniques to reduce the number of possible district centers (i.e., fix some

𝑥 𝑗 𝑗 variables to zero). They also remove some 𝑥𝑖 𝑗 variables by defining a zone around the possible

district centers and disallowing assignments that reach beyond the zone. To impose contiguity, they

use existing distance-based constraints stating that if tract 𝑖 is assigned to tract 𝑗 , then a neighbor of

𝑖 that is closer to 𝑗 is also assigned to 𝑗 , see Zoltners and Sinha (1983), Mehrotra et al. (1998), Cova

and Church (2000). For the objective function, they first minimize the sum of population-weighted

distances between tracts and their district centers. They add additional variables to capture the

number of county splits and add their sum to the objective, with a user-chosen weight of 𝛼. In a

similar way, they add variables to capture the number of majority-minority districts and subtract

this from the population-weighted-distance objective, with a user-chosen weight of 𝛽. The MIPs,

which have roughly 70,000 variables and constraints after the (inexact) variable-fixing routines, are

applied to generate legislative districts for Illinois that fare better than the enacted maps with respect

to minority representation and/or county splitting. In a footnote, they remark that they can reduce

the number of county splits for a 2000 Kentucky instance from 16 to 14. Due to the variable-fixing

routines, distance-based contiguity constraints, and multiple objectives, it is not known whether the

generated maps have a minimum number of county splits.

Last, we revisit the highly relevant work of Carter et al. (2020). They consider North Carolina’s

Whole County Provision, as interpreted by the North Carolina Supreme Court in Stephenson

v. Barlett (2002) and later clarified in Dickson v. Rucho (2015). To limit county splitting, the court

required map drawers to follow a clustering procedure that refers to 𝑞-county clusters, which are

subsets of 𝑞 contiguous counties whose combined population lies within an integer multiple of the

population balance window [𝐿,𝑈]. Among all possible county clusterings, one must first maximize

the number of 1-county clusters, then maximize the number of 2-county clusters, etc, and then divide

each cluster into the appropriate number of districts. Carter et al. (2020) provide a combinatorial

algorithm for this county clustering problem and apply it to North Carolina legislative districting.

They observe that if the real goal is to minimize the number of county splits, then a better objective
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is to maximize the number of county clusters. They argue that the minimum number of county splits

equals the number of districts 𝑘 minus the maximum number of county clusters, where 𝑘 is the

number of districts to draw. Observe that any contiguous state admits the trivial clustering in which

all counties belong to the same cluster, in which case the number of county splits would be 𝑘 − 1.

However, the claw example in Figure 4 shows that the minimum number of county splits can exceed

𝑘 − 1. To understand this discrepancy, let us consider both the “basic” and “enlarged” versions

of the county splits theorem of Carter et al. (2020). Their basic theorem states that “A clustering

that maximizes the number of county clusters also minimizes the number of county splits.” In

the enlarged version of this theorem, they add the caveat that this statement holds “except in rare

circumstances which impact the optimal districting.” The theorem statement does not specify what

this means, but their proof refers to “bad combines,” which are cases where their algorithmic proof

fails. They add that “we think it is rare to require [bad combines] in most real-world scenarios,” but

no theoretical or empirical evidence is provided. In this paper, we provide empirical evidence that

supports this claim.

2.2. Terminology and Notation

Consider a simple graph𝐺 = (𝑉, 𝐸) that represents geographic units and their adjacencies. Typically,

we take 𝐺 to be a tract-level graph, meaning that the vertex set 𝑉 consists of a state’s census tracts,

and the edges in 𝐸 show which pairs of tracts share a boundary of positive length; it is not enough

to meet at a point. In some cases, we take 𝐺 to be a block-level graph whose vertex set is the

set of census blocks. This is sometimes necessary because a tract may have more population than

is permitted in a district (e.g., for New Hampshire State House districts). The set of counties is

denoted by 𝐶, and the set of vertices in 𝑉 that belong to county 𝑐 ∈𝐶 is denoted by 𝑉𝑐.

We also use a county-level graph 𝐺𝐶 whose vertices represent counties. The county-level graph

can be obtained from 𝐺 by taking each county 𝑐 ∈𝐶, identifying the vertices 𝑉𝑐 that belong it, and

merging them into a single node. We assume that each county is contiguous, i.e., that the subgraph

𝐺 [𝑉𝑐] induced by 𝑉𝑐 is connected. Strictly speaking this is not true, and indeed some input graphs

are disconnected; however, in these cases, we connect them by adding a subset of “least cost” edges,

as in Validi et al. (2022).

By design, each block belongs to precisely one tract, and each tract belongs to precisely one

county. Each geographic unit 𝑖, which could be a block, tract, or county, has an associated population

𝑝𝑖 that is nonnegative (and sometimes zero). The populations across levels are consistent, e.g., the



Shahmizad and Buchanan: Political districting to minimize county splits
14

population of a county equals the sum of its tracts’ populations. When working with geographic

units across the census hierarchy, it is helpful to understand GEOIDs which the Census Bureau uses

to uniquely identify them and show their nested relationships. For example, the authors’ offices

are located in the census block whose GEOID is ‘401190104001002’. The first two digits ‘40’

correspond to the state of Oklahoma, the next three digits ‘119’ correspond to Payne County, the

next five digits ‘01040’ correspond to the tract, and the last five digits ‘01002’ correspond to the

block. So, for example, the blocks in Payne County are those whose GEOIDs begin with ‘40119’.

The desired number of districts is denoted by 𝑘 . This number is known and set by apportionment

for congressional districting and by state law for legislative districting. The ideal district population

𝑝 := 𝑝(𝑉)/𝑘 equals the state’s total population 𝑝(𝑉) :=
∑

𝑖∈𝑉 𝑝𝑖 divided by 𝑘 . We typically impose

population deviations of 1% (±0.5%) for congressional districting and 10% (±5%) for legislative

districting. That is, we require each congressional district to have a population between 𝐿 = ⌈0.995𝑝⌉
and 𝑈 = ⌊1.005𝑝⌋. Meanwhile, we use 𝐿 = ⌈0.95𝑝⌉ and 𝑈 = ⌊1.05𝑝⌋ for legislative districting.

A districting plan 𝑓 :𝑉→ [𝑘] assigns each vertex to a district from the set [𝑘] := {1,2, . . . , 𝑘}.
In districting plan 𝑓 , county 𝑐’s vertices are assigned to the districts 𝑓 [𝑉𝑐] = { 𝑓 (𝑣) | 𝑣 ∈𝑉𝑐}, where

𝑓 [·] denotes the image of a subset. A county 𝑐 is whole, intact, or preserved if its vertices are

assigned to only one district, i.e., if | 𝑓 [𝑉𝑐] | = 1; otherwise, it is split. The number of times that

county 𝑐 is split is given by | 𝑓 [𝑉𝑐] | − 1. The minus-one adjustment is done so that whole counties

are split zero times. District 𝑗 ∈ [𝑘] is contiguous if its vertices 𝑓 −1 [{ 𝑗}] induce a connected

subgraph, where 𝑓 −1 [·] denotes the preimage. A districting plan is contiguous if each of its districts

is contiguous. A districting plan is population-balanced if each district’s population lies between

𝐿 and 𝑈. From now on, we require all districting plans to be contiguous and population-balanced.

The total number of county splits is given by
∑

𝑐∈𝐶 ( | 𝑓 [𝑉𝑐] | − 1). We seek to minimize this quantity.

PROPOSITION 1. In a districting plan, vertices from county 𝑐 must belong to ⌈𝑝𝑐/𝑈⌉ or more

districts, so the total number of county splits is at least

(obvious lower bound)
∑︁
𝑐∈𝐶
(⌈𝑝𝑐/𝑈⌉ − 1) .

Finally, we remark that block-level districting plans are common in practice, but we try to use

tracts as our most granular geographic units. The number of census blocks in some states approaches
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one million (see Texas) which can make computations difficult. Also, the US Census Bureau has

indicated that blocks should first be aggregated into larger units before districting to mitigate

any undesirable effects that their new disclosure avoidance system may have (US Census Bureau

2021b). Census tracts are also more cohesive, designed to be homogeneous in terms of “population

characteristics, economic status, and living conditions” (US Census Bureau 1994).

3. Split Duality

In this section, we prove weak split duality using the county-district incidence graph. Then, we show

that strong split duality does not always hold. In fact, we generate synthetic districting instances

with arbitrarily large split duality gap, which we define as the difference between the minimum

number of county splits and the lower bound coming from weak split duality.

LEMMA 1. Denote by 𝑘 the number of districts. If there is a districting plan with 𝑠 county splits,

then there is a county clustering with at least 𝑘 − 𝑠 clusters.

Proof Suppose there is a districting plan with 𝑠 county splits. Construct the county-district

incidence graph, which has a vertex for each county 𝑐 ∈ 𝐶 and a vertex for each district number

𝑗 ∈ [𝑘], as illustrated in Figure 5. An edge connects county 𝑐 to district 𝑗 if some portion of county

𝑐 is assigned to district 𝑗 . This graph has 𝑛 = |𝐶 | + 𝑘 vertices and 𝑚 = |𝐶 | + 𝑠 edges, and thus has

at least 𝑛−𝑚 = ( |𝐶 | + 𝑘) − (|𝐶 | + 𝑠) = 𝑘 − 𝑠 connected components. For each of these components,

construct a cluster from its county nodes. □

𝛼

𝛽

𝛾

𝛿

𝜀

1

2

3

4

Figure 5 The county-district incidence graph for the plan in Figure 3 (right).

By straightforwardly applying Lemma 1, we get weak split duality.

THEOREM 1 (Weak split duality, Thm. 2 of Carter et al. (2020)). The minimum number of

county splits is at least the number of districts minus the maximum number of county clusters.
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Proof Let 𝑠 be the minimum number of county splits. By Lemma 1, we can construct at least

𝑐 := 𝑘 − 𝑠 county clusters. Moreover, the maximum number of county clusters 𝑐 must be at least 𝑐.

So, 𝑐 ≥ 𝑐 ≥ 𝑘 − 𝑠, and thus 𝑠 ≥ 𝑘 − 𝑐. □

PROPOSITION 2 (Arbitrarily large split duality gap). For all nonnegative integers 𝑞 and ℎ,

there exists a districting instance with 𝑘 = 2 districts and a ±ℎ-person deviation that requires at

least 𝑘 + 𝑞 county splits.

Proof Consider the county-level graph depicted in Figure 6. The county populations are given

inside the nodes. The total population is 24𝑞 + 6ℎ + 18, to be divided over 𝑘 = 2 districts, so the

ideal district population is 𝑝(𝐶)/𝑘 = 12𝑞 +3ℎ+9, while the lower and upper population bounds are

𝐿 = 12𝑞 +2ℎ+9 and𝑈 = 12𝑞 +4ℎ+9. See that no two leaves can be kept whole in the same district,

because their combined population 12𝑞 + 4ℎ + 10 is larger than 𝑈. So, consider a districting plan

in which one of the leaves 𝑙 is split, and is thus divided between districts 1 and 2. We claim that all

vertices along the path to the population-3 hub (including the hub itself) must be split. If not, then

one of them, say 𝑣, is kept whole. Without loss, suppose that 𝑣 is fully assigned to district 1. Then,

since district 2 is contiguous and contains part of the leaf county 𝑙, it cannot contain portions of

counties that lie beyond the hub, and thus has population at most 8𝑞 + 2ℎ + 8 which is less than 𝐿,

a contradiction. So, the number of split counties (and county splits) is at least 𝑘 + 𝑞, irrespective of

how counties are made up of census tracts or blocks. □

6𝑞 + 2ℎ + 5

2

2

3

2

2

2

2

6𝑞 + 2ℎ + 5 6𝑞 + 2ℎ + 5

𝑞
𝑞

𝑞

Figure 6 A districting instance that requires at least 𝑘 + 𝑞 county splits.

Despite the negative result given in Proposition 2, we will see that the split duality gap is typically

zero in practice. For this reason, our exact approach for solving this problem heavily exploits weak

split duality.
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4. Solving the Minimum County Splits Problem

We now propose to solve the minimum county splits problem, which is the task of finding a

(contiguous and population-balanced) districting plan that has a minimum number of county splits.

Our overall approach has three steps:

1. Cluster. Partition the counties into a maximum number of county clusters (𝐶1,𝐶2, . . . ,𝐶𝑞)
with associated cluster sizes (𝑘1, 𝑘2, . . . , 𝑘𝑞). If there are multiple such clusterings, pick one that is

compact, i.e., few cut edges (Validi and Buchanan 2022).

2. Sketch. For each cluster 𝐶 𝑗 , sketch a districting plan for it that has 𝑘 𝑗 districts and 𝑘 𝑗 − 1

county splits. A sketch indicates what proportion of each county is assigned to each district.

3. Detail. For each cluster 𝐶 𝑗 , find a detailed districting plan that abides by the sketch. That is,

a tract (or block) is permitted in district 𝑗 only if its county is (partially) assigned to district 𝑗 in

the sketch.

We solve each step using integer programming techniques. If the Cluster step is successful, then

weak split duality implies that at least 𝑘 − 𝑞 county splits are required (Theorem 1). If the Sketch

and Detail steps are successful, we get a districting plan with a number of county splits equal to

(𝑘1 − 1) + (𝑘2 − 1) + · · · + (𝑘𝑞 − 1) = 𝑘 − 𝑞.

So, if all three steps are successful (as will be true in our experiments), we conclude that 𝑘 −𝑞 is the

minimum number of county splits. These three steps are illustrated for the Tennessee State Senate

in Figure 7.

At a high level, our approach follows the proof strategy of Carter et al. (2020). However, they

proposed a combinatorial algorithm for the Clustering step and were unable to declare optimality

or provide an optimality gap for instances from North Carolina. Their approach to the Sketch step

is not described in enough detail to be implemented, and no procedure is given for the Detail step.

So, the Cluster-Sketch-Detail approach described here constitutes the first exact approach for the

problem and generates the first provably optimal solutions for the minimum county splits problem.

4.1. Cluster

In the maximum county clustering problem, the task is to find a county clustering with a maximum

number of clusters. To solve this problem, we propose the following mixed integer programming
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Figure 7 Application of Cluster-Sketch-Detail to the Tennessee State Senate. In the first image (Cluster), each cluster is given a

color. In the second and third images (Sketch & Detail), each district is given a color.

(MIP) model. It is inspired by the classic districting model of Hess et al. (1965), but with tweaks to

permit cluster sizes larger than one. For every pair of counties 𝑖, 𝑗 ∈ 𝐶, we create a binary variable

𝑥𝑖 𝑗 that equals one when county 𝑖 is assigned to (the county cluster rooted at) county 𝑗 . In particular,

the variable 𝑥 𝑗 𝑗 equals one if county 𝑗 roots a county cluster, and the variable 𝑦 𝑗 represents the size
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of this cluster. The maximum county clustering model is as follows.

max
∑︁
𝑗∈𝐶

𝑥 𝑗 𝑗 (1a)

s.t.
∑︁
𝑗∈𝐶

𝑥𝑖 𝑗 = 1 ∀𝑖 ∈𝐶 (1b)∑︁
𝑗∈𝐶

𝑦 𝑗 = 𝑘 (1c)

𝐶 𝑗 = {𝑖 ∈𝐶 | 𝑥𝑖 𝑗 = 1} is connected ∀ 𝑗 ∈𝐶 (1d)

𝐿𝑦 𝑗 ≤
∑︁
𝑖∈𝐶

𝑝𝑖𝑥𝑖 𝑗 ≤𝑈𝑦 𝑗 ∀ 𝑗 ∈𝐶 (1e)

𝑥𝑖 𝑗 ≤ 𝑥 𝑗 𝑗 ∀𝑖, 𝑗 ∈𝐶 (1f)

𝑥𝑖 𝑗 ∈ {0,1} ∀𝑖, 𝑗 ∈𝐶 (1g)

𝑦 𝑗 ∈ Z+ ∀ 𝑗 ∈𝐶. (1h)

The objective (1a) maximizes the number of county clusters. The assignment constraints (1b)

ensure that each county is assigned to one cluster. The size constraint (1c) ensures that the cluster

sizes sum to 𝑘 . The contiguity constraints (1d) state that each cluster should be connected. For

this, we use the flow-based constraints proposed by Shirabe (2005, 2009), cf. Oehrlein and Haunert

(2017) and Validi et al. (2022). The population balance constraints (1e) ensure that the cluster

rooted at county 𝑗 has a population between 𝐿𝑦 𝑗 and 𝑈𝑦 𝑗 . The coupling constraints (1f) ensure

that if a county is not selected as a root, then no other counties can be assigned to it.

In our experience, model (1) is not particularly useful “out of the box.” For example, one

obstacle is model symmetry: a county clustering (𝐶1,𝐶2, . . . ,𝐶𝑞) can be represented in the model

in |𝐶1 | × |𝐶2 | × · · · × |𝐶𝑞 | different ways by changing which vertex is selected as the root of each

cluster. A popular remedy to this symmetry is the asymmetric representatives trick, which was

first introduced for graph coloring problems (Campêlo et al. 2008) but has also been used for

districting (Validi et al. 2022, Validi and Buchanan 2022). In our case, it amounts to choosing an

ordering of the counties (𝑐1, 𝑐2, . . . , 𝑐𝑛) and imposing 𝑥𝑖 𝑗 = 0 when county 𝑖 comes before county

𝑗 in the ordering. In this way, among the counties in a cluster, only the earliest one in the ordering

can be its root, eliminating the model symmetry. This diagonal fixing removes nearly half of the 𝑥𝑖 𝑗
variables; see Validi and Buchanan (2022) for other fixing tricks that exploit population balance.
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Even after these variable fixing tricks, model (1) frequently takes more than one hour to identify

a maximum county clustering and prove its optimality. To illustrate this behavior, Table 1 provides

results for the ten largest US states (by population) after the 2020 census, i.e., those with at

least 13 congressional districts. (Details on our computational setup are given with the final set

of experiments in Section 5.) The situation did not change substantially when using alternative

contiguity constraints besides Shirabe’s, such as 𝑎, 𝑏-separator inequalities (Carvajal et al. 2013,

Oehrlein and Haunert 2017, Fischetti et al. 2017, Wang et al. 2017, Validi et al. 2022) or variants of

length-𝑈 𝑎, 𝑏-separator inequalities (Validi et al. 2022, Validi and Buchanan 2022), whether using

integer or fractional separation. This prompted us to develop our own heuristics to warm start the

MIP. We also propose some valid inequalities to strengthen its LP relaxation.

Table 1 Initial results for maximum county clustering model (1) on the ten largest states. We report the maximum number of

county clusters (or best lower and upper bounds [𝐿𝐵,𝑈𝐵]) and solve time in a 3600s time limit (TL).

Congressional State Senate State House

state |𝐶 | obj time obj time obj time

CA 58 [11,12] TL 14 303.32 20 106.39

FL 67 [8,10] TL 16 739.05 26 81.10

GA 159 [7,12] TL [1,33] TL [46,61] TL

IL 102 8 461.72 20 1,251.34 [29,32] TL

MI 83 [7,9] TL 18 580.82 32 2,054.85

NC 100 [7,12] TL [26,30] TL [40,41] TL

NY 62 8 560.00 20 228.36 26 344.60

OH 88 [9,12] TL 20 948.20 [35,36] TL

PA 67 [8,10] TL 23 202.14 39 17.58

TX 254 [12,19] TL [1,19] TL [29,51] TL

4.1.1. Upper Bound and Valid Inequalities First, we propose an upper bound on the number of

county clusters. A motivating insight is that an overpopulated county 𝑖 (with population 𝑝𝑖 >𝑈) must

belong to a cluster 𝐶 𝑗 whose size 𝑘 𝑗 is more than one. This cluster consumes at least ⌈𝑝𝑖/𝑈⌉ units
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of the size budget 𝑘 , which reduces the number of possible clusters by ⌈𝑝𝑖/𝑈⌉ − 1 = ⌊𝑝𝑖/(𝑈 + 1)⌋.
Summing over all counties shows that the number of clusters is at most

𝑘 −
∑︁
𝑖∈𝐶

⌊ 𝑝𝑖

𝑈 + 1

⌋
.

This upper bound on the number of county clusters, together with weak split duality, imply the

obvious lower bound on the number of county splits that was given in Proposition 1. The cluster

upper bound can be generalized to a family of bounds with parameter 𝑡 as follows.

PROPOSITION 3. For positive integers 𝑡, the number of county clusters is at most

𝑡𝑘 −
∑︁
𝑖∈𝐶

⌊ 𝑡 𝑝𝑖

𝑈 + 1

⌋
.

Proof Let 𝐶1,𝐶2, . . . ,𝐶𝑞 be a county clustering with sizes 𝑘1, 𝑘2, . . . , 𝑘𝑞. By definition, each

cluster 𝐶 𝑗 satisfies 𝑝(𝐶 𝑗 ) ≤ 𝑘 𝑗𝑈. Multiply by 𝑡/(𝑈 + 1) to get:

∑︁
𝑖∈𝐶 𝑗

𝑡 𝑝𝑖

𝑈 + 1
≤

𝑡𝑘 𝑗𝑈

𝑈 + 1
.

A weaker version of this inequality also holds:

∑︁
𝑖∈𝐶 𝑗

⌊ 𝑡 𝑝𝑖

𝑈 + 1

⌋
≤

𝑡𝑘 𝑗𝑈

𝑈 + 1
.

Since the left-hand side is an integer, we can round the right-hand side to get:

∑︁
𝑖∈𝐶 𝑗

⌊ 𝑡 𝑝𝑖

𝑈 + 1

⌋
≤

⌊
𝑡𝑘 𝑗𝑈

𝑈 + 1

⌋
≤ 𝑡𝑘 𝑗 − 1. (2)
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Then, we have the following, where the inequality holds by (2).

𝑞 +
∑︁
𝑖∈𝐶

⌊ 𝑡 𝑝𝑖

𝑈 + 1

⌋
=

𝑞∑︁
𝑗=1

©«1+
∑︁
𝑖∈𝐶 𝑗

⌊ 𝑡 𝑝𝑖

𝑈 + 1

⌋ª®¬
≤

𝑞∑︁
𝑗=1

𝑡𝑘 𝑗 = 𝑡𝑘 . □

Example. Consider six counties, each with a population of 200, that are to be divided into 𝑘 = 4

equal-population districts, i.e., 𝐿 =𝑈 = 300. If we apply Proposition 3 for 𝑡 = 1, we get that the

number of clusters is at most

𝑡𝑘 −
∑︁
𝑖∈𝐶

⌊ 𝑡 𝑝𝑖

𝑈 + 1

⌋
= 1(4) − 6

⌊
1(200)
300+ 1

⌋
= 4,

which is not helpful. However, if we use 𝑡 = 2, we get the tight bound

𝑡𝑘 −
∑︁
𝑖∈𝐶

⌊ 𝑡 𝑝𝑖

𝑈 + 1

⌋
= 2(4) − 6

⌊
2(200)
300+ 1

⌋
= 2. □

Sometimes a bound coming from Proposition 3 is tight, in which case it may not be necessary to

solve a MIP model to prove optimality of a given county clustering. Otherwise, we can still generate

valid inequalities using similar ideas.

THEOREM 2 (Rounding Inequalities). Let 𝑡 be a positive integer, and let 𝑗 be a county. The

following rounding inequality is valid for model (1).

∑︁
𝑖∈𝐶

⌊ 𝑡 𝑝𝑖

𝑈 + 1

⌋
𝑥𝑖 𝑗 ≤ 𝑡𝑦 𝑗 − 𝑥 𝑗 𝑗 .

Proof Let (𝑥∗, 𝑦∗) be a feasible solution to model (1). If 𝑦∗
𝑗
= 0, then we have

∑︁
𝑖∈𝐶

⌊ 𝑡 𝑝𝑖

𝑈 + 1

⌋
𝑥∗𝑖 𝑗 = 0 ≤ 0 = 𝑡𝑦∗𝑗 − 𝑥∗𝑗 𝑗 .
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In the other case, where 𝑦∗
𝑗
≥ 1, we have

∑
𝑖∈𝐶 𝑝𝑖𝑥

∗
𝑖 𝑗
≤ 𝑈𝑦∗

𝑗
by population balance. Multiply both

sides by 𝑡/(𝑈 + 1) to get:

∑︁
𝑖∈𝐶

( 𝑡 𝑝𝑖

𝑈 + 1

)
𝑥∗𝑖 𝑗 ≤

𝑡𝑈𝑦∗
𝑗

𝑈 + 1
.

A weaker version of this inequality also holds:

∑︁
𝑖∈𝐶

⌊ 𝑡 𝑝𝑖

𝑈 + 1

⌋
𝑥∗𝑖 𝑗 ≤

𝑡𝑈𝑦∗
𝑗

𝑈 + 1
.

Since the left-hand-side is integer, we can round the right-hand side to get:

∑︁
𝑖∈𝐶

⌊ 𝑡 𝑝𝑖

𝑈 + 1

⌋
𝑥∗𝑖 𝑗 ≤

⌊
𝑡𝑈𝑦∗

𝑗

𝑈 + 1

⌋
≤ 𝑡𝑦∗𝑗 − 1 ≤ 𝑡𝑦∗𝑗 − 𝑥∗𝑗 𝑗 .

The middle inequality requires 𝑡𝑦∗
𝑗
> 0, which is why the case 𝑦∗

𝑗
= 0 is considered separately. □

Next, we generalize the 𝑎, 𝑏-separator inequalities, which have previously been used to impose

contiguity, to cluster-separator inequalities. In their original form, these inequalities state that if

vertices 𝑎 and 𝑏 are disconnected after removing vertex subset 𝑆 from the graph, then the inequality

𝑥𝑎𝑏 ≤
∑

𝑖∈𝑆 𝑥𝑖𝑏 is valid. In words, if vertex 𝑎 is assigned to 𝑏, then at least one vertex from 𝑆 must

join them. We observe that the same inequality can sometimes be applied even when 𝑎 and 𝑏 are

connected in 𝐺𝐶 − 𝑆 by exploiting population balance.

For example, recall the Splitigan example from Figure 3. If Gamma and Epsilon County are

removed, this leaves a component consisting of Alpha and Beta County, each having a population

of three. Their combined population of six does not lie within an integer multiple of the population

bounds [𝐿,𝑈] = [4,4], so they cannot form a county cluster by themselves. We conclude that if

Alpha County is assigned to Beta County, then Gamma and/or Epsilon County must join them,

i.e., 𝑥𝛼𝛽 ≤ 𝑥𝛾𝛽 + 𝑥𝜀𝛽. Generally, we have the following theorem, where a county cluster is a subset

of contiguous counties whose population lies within an integer multiple of the population balance

window [𝐿,𝑈].
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THEOREM 3 (Cluster-Separator Inequalities). Let 𝑆 be a subset of counties, and let 𝑎, 𝑏 ∉ 𝑆 be

two other counties (possibly 𝑎 = 𝑏). If there is no county cluster in 𝐺𝐶 − 𝑆 that contains 𝑎 and 𝑏,

then the following cluster-separator inequality is valid for model (1).

𝑥𝑎𝑏 ≤
∑︁
𝑖∈𝑆

𝑥𝑖𝑏 .

Proof Suppose that (𝑥, �̂�) is feasible to model (1) and that there is no county cluster in𝐺𝐶−𝑆 that

contains 𝑎 and 𝑏. We are to show that 𝑥𝑎𝑏 ≤
∑

𝑖∈𝑆 𝑥𝑖𝑏. If 𝑥𝑎𝑏 = 0 then the inequality is easily satisfied,

so suppose that 𝑥𝑎𝑏 = 1. Consider the subset of counties assigned to 𝑏, i.e.,𝐶𝑏 = {𝑖 ∈𝐶 | 𝑥𝑖𝑏 = 1}. By

constraints (1f), we have 1 = 𝑥𝑎𝑏 ≤ 𝑥𝑏𝑏 so 𝑏 also belongs to𝐶𝑏. By constraints (1d),𝐶𝑏 is connected.

By constraints (1e), 𝐶𝑏 has a population satisfying 𝐿�̂�𝑏 ≤ 𝑝(𝐶𝑏) ≤𝑈�̂�𝑏, where �̂�𝑏 is a nonnegative

integer by constraints (1h) (and positive by constraints (1e)). This is all to say that 𝐶𝑏 qualifies as a

county cluster of size �̂�𝑏 that contains 𝑎 and 𝑏. Now, if there is an element 𝑐 common to both 𝑆 and

𝐶𝑏, then 𝑥𝑎𝑏 = 1 = 𝑥𝑐𝑏 ≤
∑

𝑖∈𝑆 𝑥𝑖𝑏, as desired. Otherwise, 𝑆 and 𝐶𝑏 are disjoint, meaning that 𝐶𝑏 is

a county cluster in 𝐺𝐶 − 𝑆 that contains 𝑎 and 𝑏, a contradiction. □

The particular case of these inequalities where 𝑎 = 𝑏 was essentially proposed by Oehrlein and

Haunert (2017), see their inequalities (14).

We evaluate the effectiveness of the rounding inequalities from Theorem 2 and the cluster-

separator inequalities from Theorem 3 by testing them on the same ten states as in Table 1. We

apply the rounding inequalities for the parameter value 𝑡 = 1, as this seemed to work best in initial

testing. We apply the cluster-separator inequalities for sets 𝑆 that are near1 to 𝑏. We also attempted

to separate the cluster-separator inequalities on-the-fly, but adding the subset of them “near” to 𝑏 a

priori seemed to work better.

Results are given in Table 2. We find the valid inequalities to be very helpful for the state senate

and state house instances, solving most of them within a one-hour time limit or leaving an absolute

optimality gap of one cluster. The exception is Texas, which has the most counties of any state (254).

However, most of the congressional districting instances remain troublesome, which motivates the

warm start heuristics that are developed next.

4.1.2. MIP-Based Construction Heuristic First, we propose a MIP-based construction heuris-

tic. It is inspired by a procedure of McCartan and Imai (2023). At a high-level, each step of their
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Table 2 Initial results when using valid inequalities from Theorems 2 and 3.

Congressional State Senate State House

state |𝐶 | obj time obj time obj time

CA 58 [10,12] TL 14 108.24 20 11.69

FL 67 [8,10] TL 16 104.10 26 4.82

GA 159 [6,12] TL [31,32] TL [57,58] TL

IL 102 8 1,663.47 20 90.73 [30,31] TL

MI 83 9 2,886.09 18 87.65 32 186.04

NC 100 [10,12] TL 28 709.68 40 802.24

NY 62 8 2,628.22 20 27.14 26 75.91

OH 88 [10,12] TL 20 294.78 35 2,206.51

PA 67 10 457.92 23 30.34 39 5.96

TX 254 [1,19] TL [13,19] TL [1,51] TL

approach is to draw a random spanning tree and delete one of its edges to carve off a district. Our

approach is different in that we carve off clusters and use a MIP for the carving step. In a greedy

attempt to maximize the number of clusters, we minimize the size 𝑘 𝑗 of the cluster 𝐶 𝑗 that is carved

off. To promote compactness, we impose a secondary objective to minimize the weight of the cut

edges emanating from the cluster. The weight of each edge is chosen uniformly at random between

zero and one. In this way, we can run the construction heuristic multiple times and get different

starting points for local search. Given inputs 𝑝, 𝐿,𝑈, 𝑘 , and county-level graph𝐺𝐶 , the construction

heuristic generates a county clustering as follows.

1. let 𝐺′←𝐺𝐶 and 𝑘′← 𝑘 and 𝑗← 0

2. choose edge weights uniformly at random from [0,1]
3. while 𝑘′ > 0 do

• 𝑗← 𝑗 + 1

• find a nonempty cluster 𝐶 𝑗 ⊆ 𝑉 (𝐺′) and integer 𝑘 𝑗 ≥ 1 such that

(a) the cluster 𝐶 𝑗 and its complement 𝑉 (𝐺′) \𝐶 𝑗 are connected,

(b) the cluster 𝐶 𝑗 and its complement are population-balanced, i.e.,

𝑘 𝑗𝐿 ≤ 𝑝(𝐶 𝑗 ) ≤ 𝑘 𝑗𝑈 and (𝑘′− 𝑘 𝑗 )𝐿 ≤ 𝑝(𝑉 (𝐺′) \𝐶 𝑗 ) ≤ (𝑘′− 𝑘 𝑗 )𝑈,

(c) the size 𝑘 𝑗 is minimum, with a secondary objective to minimize the weight of the edges

between the cluster and its complement
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• update 𝐺′←𝐺′−𝐶 𝑗 and 𝑘′← 𝑘′− 𝑘 𝑗

4. return county clusters (𝐶1,𝐶2, . . . ,𝐶 𝑗 ) with sizes (𝑘1, 𝑘2, . . . , 𝑘 𝑗 )
Each iteration selects a cluster 𝐶 𝑗 and associated size 𝑘 𝑗 . For this task, we use a two-cluster

labeling MIP (Validi and Buchanan 2022) in which the size of the first cluster is 𝑘 𝑗 , the size of the

second cluster is 𝑘′− 𝑘 𝑗 , and contiguity is imposed by adding violated 𝑎, 𝑏-separator inequalities in

a cut callback. To handle the two objectives, we initially fix the size to the smallest possible value

𝑘 𝑗 = 1 and minimize the weight of the cut edges. If this MIP is infeasible, then we increase the size

𝑘 𝑗 by one and re-optimize, repeating until feasibility. Typically, each MIP solve takes less than one

second, and at most 𝑘 iterations are required, so the total time is reasonable. The solution quality

is usually good but suboptimal often enough to motivate local search. Also, even when a county

clustering is known to be maximum, local search can help make the clusters more compact.

4.1.3. MIP-Based Local Search We improve the feasible solutions coming from the construc-

tion heuristic using MIP-based local search. For the local search neighborhood, we use recombina-

tion, which was originally proposed to generate large ensembles of districting plans (DeFord et al.

2021). In an ordinary recombination move, two districts are merged into a double district, a random

spanning tree is drawn over their vertices, and one of its edges is deleted to split the spanning tree

into two new districts. The authors also proposed a more general 𝑡-opt recombination move in which

𝑡 districts are merged together and re-partitioned into 𝑡 new districts, say, by deleting 𝑡 − 1 edges

from a random spanning tree. Our approach is different in that we are working with clusters and

use a MIP for the re-partitioning step. Again, our primary objective is to maximize the number of

clusters, with a secondary objective to minimize the number of cut edges between clusters. Given

inputs 𝑝, 𝐿, 𝑈, 𝑘 , county-level graph 𝐺𝐶 , and initial county clustering (𝐶1,𝐶2, . . . ,𝐶𝑞) with sizes

(𝑘1, 𝑘2, . . . , 𝑘𝑞), the 𝑡-opt recombination heuristic works as follows.

1. Select 𝑡 clusters from the county clustering, say, (𝐶′1,𝐶
′
2, . . . ,𝐶

′
𝑡 ) with sizes (𝑘′1, 𝑘

′
2, . . . , 𝑘

′
𝑡).

2. Merge the clusters 𝐶′ =𝐶′1 ∪𝐶
′
2 ∪ · · · ∪𝐶

′
𝑡 and sizes 𝑘′ = 𝑘′1 + 𝑘

′
2 + · · · + 𝑘

′
𝑡 .

3. If 𝐺 [𝐶′] is connected, find a maximum county clustering of the counties 𝐶′ with total size

𝑘′, with a secondary objective to minimize the number of cut edges.

4. If there is an improvement, then update the county clustering.

5. Repeat, trying different subsets of 𝑡 clusters, until no more improvements are possible.

To find a maximum county clustering of (𝐶′, 𝑘′) in step 3, we simply solve the maximum county

clustering model (1). Denote by 𝑡′ ≥ 𝑡 the resulting number of clusters. We then minimize the
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number of cut edges by solving a 𝑡′-cluster labeling MIP in which contiguity is imposed by adding

violated 𝑎, 𝑏-separator inequalities in a cut callback (Validi and Buchanan 2022).

The results of our heuristics and their effectiveness as a MIP warm start are illustrated in Table 3.

For the purposes of these initial tests, we apply them just to congressional instances, as this is where

they are needed most. We run the carving construction heuristic, followed by 𝑡-opt recombination

local search for 𝑡 = 2, then 𝑡 = 3, and lastly 𝑡 = 4. We iterate this MIP-based carve-and-recombination

heuristic three times. Afterwards, we use the best county clustering to warm start model (1). When

possible, we use the upper bound from Proposition 3 for 𝑡 = 1 to avoid a MIP solve (see GA, MI,

and TX). Otherwise, we apply the inequalities from Theorems 2 and 3.

Table 3 Initial heuristic results for ten congressional districting instances.

Carve and Recom MIP Solve

state |𝐶 | LB time obj time

CA 58 11 1,671.48 11 2,269.01

FL 67 8 2,063.04 [8,10] TL

GA 159 12 8,457.05 12 0.00

IL 102 8 2,165.48 8 8.78

MI 83 9 5,272.17 9 0.00

NC 100 11 1,255.11 [11,12] TL

NY 62 8 2,905.24 8 31.37

OH 88 11 3,849.23 11 161.38

PA 67 10 4,031.30 10 64.01

TX 254 19 14,747.39 19 0.00

4.2. Sketch

The next step after Cluster is Sketch. A sketch indicates what proportion of each county is

assigned to each district. We begin with a maximum county clustering (𝐶1,𝐶2, . . . ,𝐶𝑞) with sizes

(𝑘1, 𝑘2, . . . , 𝑘𝑞). For each cluster 𝐶′ with size 𝑘′, we sketch a districting plan with 𝑘′ districts and

𝑘′−1 county splits, eventually leading to a districting plan with (𝑘1−1) + (𝑘2−1) + · · · + (𝑘𝑞 −1) =
𝑘 − 𝑞 county splits, matching the bound from weak split duality.

For this task, we propose a MIP. For notational simplicity, we write the formulation for the entire

set of counties 𝐶 and total size 𝑘 , but in actuality it should be applied to each cluster separately.
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The binary variable 𝑥𝑖 𝑗 indicates whether some portion of county 𝑖 ∈ 𝐶 is assigned to district

𝑗 ∈ [𝑘] := {1,2, . . . , 𝑘}. The variable 𝑧𝑖 𝑗 indicates what proportion of county 𝑖 ∈ 𝐶 is assigned to

district 𝑗 ∈ [𝑘]. The integer variable 𝑠𝑖 counts the number of times that county 𝑖 ∈ 𝐶 is split. We

begin with some basic constraints.

∑︁
𝑖∈𝐶

𝑠𝑖 = 𝑘 − 1 (3a)

𝑘∑︁
𝑗=1

𝑥𝑖 𝑗 = 𝑠𝑖 + 1 ∀𝑖 ∈𝐶 (3b)

𝑘∑︁
𝑗=1

𝑧𝑖 𝑗 = 1 ∀𝑖 ∈𝐶 (3c)

𝐿 ≤
∑︁
𝑖∈𝐶

𝑝𝑖𝑧𝑖 𝑗 ≤𝑈 ∀ 𝑗 ∈ [𝑘] (3d)

0 ≤ 𝑧𝑖 𝑗 ≤ 𝑥𝑖 𝑗 ∀𝑖 ∈𝐶, ∀ 𝑗 ∈ [𝑘] (3e)

𝑥𝑖 𝑗 ∈ {0,1} ∀𝑖 ∈𝐶, ∀ 𝑗 ∈ [𝑘] . (3f)

Constraint (3a) imposes that there are 𝑘−1 county splits. Constraints (3b) count the number of splits

for each county. Constraints (3c) impose that 100% of each county is assigned. Constraints (3d)

ensure population balance. Constraints (3e) relate the continuous assignment variables 𝑧𝑖 𝑗 and their

binary counterparts 𝑥𝑖 𝑗 .

So far, the model captures the population balance constraints and splitting constraints. Other

properties that we would like in our sketch include compactness and contiguity. Accordingly, we

introduce binary variables 𝑦𝑒 𝑗 indicating whether edge 𝑒 belongs to district 𝑗 ∈ [𝑘], i.e., if its

endpoints are assigned to district 𝑗 . We permit each edge to belong to at most one district; this

removes the incentive for multiple districts to cross the border between two counties, yielding

computational speedups and better sketches. This leads to the following edge consistency constraints

over the edges 𝐸 (𝐶) of the cluster.
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𝑦𝑒 𝑗 ≤ 𝑥𝑖 𝑗 ∀𝑖 ∈ 𝑒 ∈ 𝐸 (𝐶), ∀ 𝑗 ∈ [𝑘] (4a)

𝑦𝑒 𝑗 ≥
∑︁
𝑖∈𝑒

𝑥𝑖 𝑗 − 1 ∀𝑒 ∈ 𝐸 (𝐶), ∀ 𝑗 ∈ [𝑘] (4b)

𝑘∑︁
𝑗=1

𝑦𝑒 𝑗 ≤ 1 ∀𝑒 ∈ 𝐸 (𝐶) (4c)

𝑦𝑒 𝑗 ∈ {0,1} ∀𝑒 ∈ 𝐸 (𝐶), ∀ 𝑗 ∈ [𝑘] . (4d)

If an edge belongs to a district, then it is preserved; otherwise, it is cut. In a contiguous district, its

number of preserved edges is at least its number of nodes minus one.

∑︁
𝑒∈𝐸 (𝐶)

𝑦𝑒 𝑗 ≥
∑︁
𝑖∈𝐶

𝑥𝑖 𝑗 − 1 ∀ 𝑗 ∈ [𝑘] . (5)

When the input graph is a tree (which is often true for small county clusters), these constraints (4)

and (5) suffice for contiguity (Chopra et al. 2017, Wang et al. 2017). Generally, however, our imple-

mentation adds violated 𝑎, 𝑏-separator inequalities in a callback. For compactness, we maximize

the number of preserved edges which is equivalent to minimizing the number of cut edges:

max
∑︁

𝑒∈𝐸 (𝐶)

𝑘∑︁
𝑗=1

𝑦𝑒 𝑗 .

As a secondary objective, we minimize the sum of squares of counties touched by the districts

min
𝑘∑︁
𝑗=1

(∑︁
𝑖∈𝐶

𝑥𝑖 𝑗

)2

,



Shahmizad and Buchanan: Political districting to minimize county splits
30

which can be linearized by introducing a binary variable 𝑏 𝑗 𝑡 for each district 𝑗 and each possible
number of counties touched 𝑡 = 1,2, . . . , |𝐶 | and writing

min
𝑘∑︁
𝑗=1

|𝐶 |∑︁
𝑡=1

𝑡2𝑏 𝑗 𝑡

s.t.
∑︁
𝑖∈𝐶

𝑥𝑖 𝑗 =

|𝐶 |∑︁
𝑡=1

𝑡𝑏 𝑗 𝑡 ∀ 𝑗 ∈ [𝑘]

|𝐶 |∑︁
𝑡=1

𝑏 𝑗 𝑡 = 1 ∀ 𝑗 ∈ [𝑘]

𝑏 𝑗 𝑡 ∈ {0,1} ∀ 𝑗 ∈ [𝑘], ∀𝑡 = 1,2, . . . , |𝐶 |.

To motivate the secondary objective, consider an instance with three counties (𝑐1, 𝑐2, 𝑐3) arranged
in a line with populations (140,120,140) that are to be divided into four districts of 100 people.
In one possible sketch, a 100-person district is created inside each county, with the fourth district
snaking through all counties to pick up the leftover populations (40,20,40). This sketch has three
county splits and two preserved edges. In another possible sketch, we build the districts from left-
to-right, with populations taken from counties (𝑐1, 𝑐2, 𝑐3) as (100,0,0), (40,60,0), (0,60,40), and
(0,0,100). This sketch also has three county splits and two preserved edges. However, the latter
sketch scores better with respect to some splitting scores as well as to our secondary objective,
12 + 22 + 22 + 12 = 10 versus 12 + 12 + 12 + 32 = 12, and we found it easier to extend the latter sketch
into a detailed districting plan. Indeed, imagine an example with 100 counties arranged in a line,
each with a population of 101. The 100-inside-each-county plus snaking-leftovers plan would have
one very strange district with one person from each county, which would give it an awful secondary
score of 12 +12 + · · · +12 +1002 = 10100, while the left-to-right plan would have a secondary score
of 12 + 22 + 22 + · · · + 22 + 12 = 398. Further, the left-to-right sketch is easier to detail.

To speed up the MIP solve, we eliminate some model symmetry by identifying a county 𝑖 ∈ 𝐶
with largest population and imposing 𝑧𝑖1 ≥ 𝑧𝑖2 ≥ · · · ≥ 𝑧𝑖𝑘 . This in turn forces 𝑥𝑖 𝑗 = 1 for 𝑗 =

1,2, . . . , ⌈𝑝𝑖/𝑈⌉. Ultimately, the time needed for Sketch is negligible, less than one second in 99%
of cases. This is explainable by the fact that the clusters usually have small size and few counties.

4.3. Detail

The last step is Detail, which extends the sketches into a detailed districting plan. At a high-
level, we use a capacitated 𝑘-means heuristic, but with additional constraints for contiguity and
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county-splitting. Where possible, we speed up the computation by building districts from tracts, but

sometimes resort to blocks. We also apply simplified (and speedy) contiguity constraints at first,

only resorting to more expensive 𝑎, 𝑏-separator inequalities when needed. Below, we motivate and

explain these implementation decisions, which do not sacrifice optimality.

Detail finds a detailed districting plan for each county cluster that abides by the sketch. For

example, suppose the sketch has a given county being 50% assigned to district 3, 30% assigned to

district 5, and 20% assigned to district 9. Then, in the Detail step, we permit the tracts (or blocks) of

this county to be assigned only to districts 3, 5, and 9. Even though the percentages from the sketch

are ignored, the number of county splits will remain the same, (𝑘1 − 1) + (𝑘2 − 1) + · · · + (𝑘𝑞 − 1) =
𝑘 − 𝑞, again matching the bound from weak split duality.

Districts can usually be built from tracts, but this already poses a computational challenge as the

number of tracts in many states exceeds one thousand. Worse, some instances require more granular

units such as blocks (see New Hampshire’s State House), and the number of blocks in a state can

approach one million. Accordingly, we must be very careful in our modeling and approach. A direct

application of standard integer programming models like the Hess model or the labeling model is

simply out of the question. Working in our favor is the fact that clusters usually have few counties,

particularly for state house instances. Additionally, the sketches keep many counties whole, and

for such counties there is nothing for us to decide. Nevertheless, we will still encounter challenges

in big cities. For example, consider the county clusters that contain Los Angeles County, Cook

County (Chicago), Harris County (Houston), or Maricopa County (Phoenix). These counties must

be split, so it is inevitable that we will have to deal with large tract-level or block-level instances.

This motivates us to develop MIP-based heuristics for Detail that can handle large instances.

First, we apply a capacitated 𝑘-means heuristic, similar to Hess et al. (1965), Bradley et al.

(2000), and Validi et al. (2022). With a suitable map projection, we identify (𝑥, 𝑦)-coordinates of

each tract’s centroid. Then, after obtaining an initial assignment of tracts to 𝑘 districts, we find

the (population-weighted) mean of each district. The cost to assign tract 𝑖 to district 𝑗 is taken as

(𝑝𝑖 + 1)𝑑2
𝑖 𝑗

where 𝑝𝑖 is the population of 𝑖 and 𝑑𝑖 𝑗 is the Euclidean distance between the centroid

of 𝑖 and the mean of district 𝑗 , where the +1 term ensures that zero-population tracts still prefer

nearby districts. We reassign tracts to districts by minimizing the reassignment cost subject to the

population balance constraints. We repeat this procedure until convergence. At termination, we have

a partition of the tracts into 𝑘 reasonably compact—although typically not contiguous—districts.

Throughout this procedure, we enforce the sketch constraints. That is, tract 𝑖 is permitted in district
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𝑗 only if its county is partially assigned to district 𝑗 . By our sketch, this means that there will be at

most 𝑘 − 1 county splits.

If we are lucky, this procedure returns connected districts; otherwise, we add explicit contiguity

constraints. For computational efficiency, we first try constraints inspired by the tree-based conti-

guity constraints of Zoltners and Sinha (1983), see also Mehrotra et al. (1998), Cova and Church

(2000), and Gurnee and Shmoys (2021). After applying the capacitated 𝑘-means heuristic, find

the node (tract) that is closest to each district’s mean. This gives a set of 𝑘 roots. From each root,

find the (graph-based) distance to all other vertices, where intra-county edges have weight one and

inter-county edges have large weight (e.g., equal to the number of nodes in the graph). In this way,

the distances within a county are shorter than distances across county boundaries, cf. Clelland et al.

(2022). For each district 𝑗 , order the vertices by increasing distance from its root, and let pos 𝑗 (𝑖)
be the position of vertex 𝑖 in this ordering. Then, for each non-root vertex 𝑖 and for each district

𝑗 , we impose that if 𝑖 is assigned to 𝑗 , then at least one of its neighbors that appears earlier in the

ordering must be assigned to 𝑗 , i.e.,

𝑥𝑖 𝑗 ≤
∑︁

𝑣∈𝑁 (𝑖)
pos 𝑗 (𝑣)<pos 𝑗 (𝑖)

𝑥𝑣 𝑗 . (6)

Any 𝑥 that satisfies these DAG constraints gives connected districts, although the converse is not

true. We call them DAG constraints because they can equivalently be expressed in terms of a directed

acyclic graph in which all 𝑚 edges are oriented based on the ordering, whereas the tree-based

constraints of Zoltners and Sinha are based on the 𝑛−1 edges of a shortest-path tree. In this way, the

DAG constraints permit more solutions than the tree-based constraints, at the cost of having more

nonzeros—𝑂 (𝑘𝑚) versus 𝑂 (𝑘𝑛)—although planar instances satisfy 𝑂 (𝑘𝑚) = 𝑂 (𝑘𝑛). The DAG

constraints also permit more solutions than distance-based contiguity constraints if distances are not

unique. If we are unsuccessful with the DAG constraints, then we resort to using the 𝑎, 𝑏-separator

constraints in callback.

The above steps are first attempted on the tract-level graph. If that is unsuccessful, then we resort

to using the block-level graph. When applying the DAG constraints, intra-tract edges have weight

one, other intra-county edges have weight |𝑉 |, and inter-county edges have weight |𝑉 |2. Given

the large size of the block-level instances and the desire to keep tracts whole, we add additional
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constraints to the 𝑎, 𝑏-separator model requiring that each tract is divided across at most two

districts and that only 𝑘 − 1 tracts are split where 𝑘 is the size of the cluster. For the vast majority

of instances, these tract-level or block-level procedures suffice for the Detail step. For a handful of

tricky clusters, we use other ad-hoc methods to find a suitable districting plan.

5. Final Results

In our computational experiments, we use a Dell Precision Tower 7000 Series (7810) machine

running Windows 10 enterprise, x64, with an Intel Xeon Processor E52630 v4 (10 cores, 2.2GHz,

3.1GHz Turbo, 2133MHz, 25MB, 85W) and 32 GB memory. Our MIP solver is Gurobi v10.0. Our

code is written in Python and is available at https://github.com/maralshahmizad/Po

litical-Districting-to-Minimize-County-Splits.

The raw districting data comes from the US Census Bureau (2021a). Initial data processing

was conducted by Redistricting Data Hub (2021a). Daryl DeFord finished the data processing,

including creating the graphs and storing them as json files, and kindly shared the files with us.

We are also happy to share the 10+ GB of data with others after they agree to the terms set by

RDH. The GerryChain package (MGGG 2023) is used to read the json files and convert them

to NetworkX graphs. The number of legislative districts for each state was taken from Ballotpedia

(2023). Adjustments were made in select cases to handle multi-member districts2. We do not provide

results for Hawaii given that it is a collection of islands, and contiguity is far from attainable. The

number of county splits in enacted plans was calculated from block equivalency files for the 118th

Congress (US Census Bureau 2023) and 2022 state legislative districts (US Census Bureau 2022).

To draw maps, we use the TIGER/Line Shapefiles from the US Census Bureau (2021c). We do

not consider any laws that vary by state. For example, some states reallocate incarcerated individuals

so that they are counted at their previous residence (Redistricting Data Hub 2021b), but we directly

use the P.L. 94-171 data in our experiments (US Census Bureau 2021a). Unless noted otherwise, we

impose a 1% (±0.5%) population deviation for congressional districts and a 10% (±5%) population

deviation for legislative districts, which are chosen to follow legal norms.

For the maximum county clustering problem, we apply the valid inequalities (rounding and

cluster-separator inequalities) to all instances, but apply the warm start heuristics (carving and

recombination) only to Texas and the congressional instances. We impose a 24-hour time limit on the

final MIP solve. If the final MIP solve identifies a larger county clustering than the warm start, then

we re-apply local search for 𝑡 = 2,3,4, but only to reduce the number of cut edges, a process that we

https://github.com/maralshahmizad/Political-Districting-to-Minimize-County-Splits
https://github.com/maralshahmizad/Political-Districting-to-Minimize-County-Splits
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call cleanup. All maximum county clustering instances are solved by our standard implementation,

with the exception of NC/CD and GA/SS, which terminated with bounds of [11,12] and [31,32],
respectively. Using ad-hoc analyses, we show that 11 and 31 are optimal, as documented on GitHub.

The sketch and detail codes were successful for all but seven instances: PA/CD, IN/SS, NC/SS,

FL/SH, ME/SH, NH/SH, WY/SH. To solve them, we make ad-hoc tweaks to the code (e.g., longer

time limit, tweaks to sketch, tweaks to detail). Final results for congressional, state senate, and state

house instances are provided in Tables 5, 6, and 7 of Appendix B of the e-companion, respectively.

5.1. Strong Split Duality Holds in Practice

First, we observe that strong split duality holds for all 140 instances. That is, the split LB column

(which reports the bound from weak split duality) always equals the minimum number of county

splits in the min splits column. This provides the first empirical evidence to support claims

of Carter et al. (2020) who wrote that “we think it is rare [to have strong split duality violations] in

most real-word scenarios.” So, while strong split duality should not be considered as a mathematical

theorem (see Proposition 2), our experiments have found it to be a safe working hypothesis.

5.2. Strength of the Obvious Lower Bound

Next, we evaluate the strength of the obvious lower bound from Proposition 1. For each districting

instance, we calculate the absolute optimality gap between the obvious lower bound and the

minimum number of county splits. For each district type, we construct a histogram showing the

frequency of each absolute optimality gap, see Figure 8.

For many congressional instances, the obvious lower bound is often strong, being sharp (i.e.,

with zero gap) for 25/43 instances and yielding an absolute optimality gap of at most three for

40/43 instances. The exceptions are Florida (10 vs. 19), New Jersey (3 vs. 9), and New York (13

vs. 18). For state senate instances, the obvious lower bound is again reasonably strong, yielding an

absolute optimality of at most three for 46/49 instances. The exceptions are Florida (18 vs. 24),

Mississippi (19 vs. 23), and South Carolina (26 vs. 30). However, for state house instances, the

obvious lower bound is less powerful, yielding an absolute optimality gap of at most three for only

20/48 instances. Not once is it sharp, not even for states like Delaware or Rhode Island that have

just a handful of counties. Moreover, the obvious lower bound is off by five or more on 22 state

house instances. For these instances, a different bound, such as the one coming from weak split

duality, is crucial to prove optimality.
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Figure 8 By how much does the obvious lower bound underestimate the minimum number of county splits?

5.3. Comparison with Enacted Plans

Now, we compare the minimum number of county splits to that of the enacted plans. For congres-

sional instances, we see a noticeable difference for states such as California (41 vs. 72), Georgia (2

vs. 21), Illinois (9 vs. 53), and Texas (19 vs. 59). Interestingly, the congressional plans enacted by
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Illinois and Texas after the 2020 Census have been declared the worst Democratic and Republican

gerrymanders, respectively (Kenny et al. 2023).

However, partisan gerrymandering is not the only explanation for these differences. One could

rightly speculate that compliance with federal law (e.g., the Voting Rights Act of 1965), state law,

or other criteria may force more county splits than Table 5 suggests. Recall that we enforce a 1%

(±0.5%) population deviation in our congressional experiments, as the US Supreme Court has

permitted population deviations approaching 1% in the recent past, see Tennant v. Jefferson County

(2012). However, most states adopt congressional plans with 1-person deviation. The reason is that

any deviation from “precise mathematical equality” risks a lawsuit, at which point the state must

show that the deviation was “necessary to achieve some legitimate state objective” including but

not limited to “making districts compact, respecting municipal boundaries, preserving the cores of

prior districts, and avoiding contests between incumbent Representatives,” see Karcher v. Daggett

(1983) and Hebert et al. (2010). Rather than deal with these issues, states often opt for 1-person

deviation, which may require more county splits than Table 5 suggests. (In Section 5.4, we dive

deeper into 1-person deviation.) However, we suspect that none of these justifications can explain

the large number of county splits in the congressional plans for Illinois and Texas.

For the state senate and state house instances, many enacted plans have an enormous number of

county splits compared to the minimum possible. This is despite the fact that many states impose the

same 10% (±5%) population deviation that we do. For state senate, consider Illinois (39 vs. 135),

Louisiana (21 vs. 77), Minnesota (41 vs. 100), and Wisconsin (13 vs. 73). For state house, consider

Illinois (87 vs. 220), Indiana (61 vs. 129), Mississippi (86 vs. 181), and Wisconsin (69 vs. 159).

Meanwhile, for New Hampshire and Vermont, the enacted plans actually have fewer county splits,

but only because of the particular way we handled their floterial and multi-member districts of

different sizes (see endnote 2).

Which state legislative districts perform the best/worst in terms of county splitting? To answer

this question, we calculate the county splits ratio for each instance, which we define as the number

of county splits in the enacted plan divided by the minimum number of county splits possible (in

a contiguous and population-balanced plan). A ratio of 1 indicates that the enacted plan achieved

a minimum number of county splits, while a ratio of 2 indicates that the enacted plan has twice

as many county splits than the contiguity and population-balance constraints require. The county

splits ratios for each state senate and state house are plotted in Figure 9. The plot excludes MD,

NH, SD, and VT for multi-member district reasons, as well as NE because it has no house.
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Figure 10 County Splits Ratios, Zoom-in to the State Senate window [1,2.3] and State House window [1,2].

We see that Texas’s State House plan has a tiny county splits ratio of 101/100 = 1.01, while its

State Senate plan has a much larger ratio of 41/12 ≈ 3.42. To explain this, recall the County Line

Rule from its constitution, which puts strict limits on county splitting in their House map, but not

in their Senate map. Likewise, the Whole County Provision in North Carolina tightly constrains

county splits, leading to ratios of 24/22 ≈ 1.09 and 80/80 = 1.00 in their plan. Meanwhile, Illinois’s

constitution only specifies that legislative districts “shall be compact, contiguous and substantially

equal in population,” allowing their plans to be an outlier in Figure 9, with county splits ratios of

135/39 ≈ 3.46 and 220/87 ≈ 2.53, respectively. Arguably the worst offender is Wisconsin, which

has county splits ratios of 73/13 ≈ 5.62 and 159/69 ≈ 2.30. Wisconsin is such an outlier in Figure 9

that many other states cannot be seen, so Figure 10 provides a zoomed-in version of this plot.

5.4. County Clusterings with 1-Person Deviation

In recent years, enacted congressional districts have often exhibited a 1-person deviation, i.e., all

districts have a population between 𝐿 = ⌊𝑝(𝐶)/𝑘)⌋ and𝑈 = ⌈𝑝(𝐶)/𝑘⌉. Researchers have speculated
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that, with such tight population balance constraints, the only possible county clustering is the trivial

one where all counties belong to the same cluster (Autry et al. 2021, Nagle 2022). Is this actually

true? To answer this question, it suffices to check the feasibility of a labeling MIP model (Validi

and Buchanan 2022) with two clusters. Results are given in Table 4. Contrary to conventional

wisdom, 79% of real-life districting instances admit a nontrivial county clustering. This includes all

instances with more than 30 counties. One explanation for this surprising result is that the number

of ways to partition |𝐶 | counties into two clusters is 2|𝐶 |−1, which grows so rapidly that some of

them are bound to be contiguous and satisfy a 1-person deviation. Indeed, when the number of

counties exceeds 30, we have more than one billion options to choose from.

Table 4 Which congressional, state senate, and state house instances (CD, SS, SH) admit nontrivial county clusterings for

1-person deviation (excluding HI)? Black squares indicate uninteresting or nonexistent instances.

state |𝐶 | CD SS SH state |𝐶 | CD SS SH state |𝐶 | CD SS SH state |𝐶 | CD SS SH

AK 30 ■ ✗ ✗ IN 92 ✓ ✓ ✓ ND 53 ■ ✓ ✓ SD 66 ■ ✓ ✓

AL 67 ✓ ✓ ✓ KS 105 ✓ ✓ ✓ NE 93 ✓ ✓ ■ TN 95 ✓ ✓ ✓

AR 75 ✓ ✓ ✓ KY 120 ✓ ✓ ✓ NH 10 ✗ ✗ ✓ TX 254 ✓ ✓ ✓

AZ 15 ✗ ✗ ✗ LA 64 ✓ ✓ ✓ NJ 21 ✗ ✗ ✗ UT 29 ✗ ✓ ✓

CA 58 ✓ ✓ ✓ MA 14 ✗ ✗ ✗ NM 33 ✓ ✓ ✓ VA 133 ✓ ✓ ✓

CO 64 ✓ ✓ ✓ MD 24 ✗ ✗ ✗ NV 17 ✗ ✗ ✗ VT 14 ■ ✗ ✓

CT 8 ✗ ✗ ✓ ME 16 ✗ ✗ ✓ NY 62 ✓ ✓ ✓ WA 39 ✓ ✓ ✓

DE 3 ■ ✗ ✗ MI 83 ✓ ✓ ✓ OH 88 ✓ ✓ ✓ WI 72 ✓ ✓ ✓

FL 67 ✓ ✓ ✓ MN 87 ✓ ✓ ✓ OK 77 ✓ ✓ ✓ WV 55 ✓ ✓ ✓

GA 159 ✓ ✓ ✓ MO 115 ✓ ✓ ✓ OR 36 ✓ ✓ ✓ WY 23 ■ ✓ ✓

IA 99 ✓ ✓ ✓ MS 82 ✓ ✓ ✓ PA 67 ✓ ✓ ✓

ID 44 ✓ ✓ ✓ MT 56 ✓ ✓ ✓ RI 5 ✗ ✗ ✗

IL 102 ✓ ✓ ✓ NC 100 ✓ ✓ ✓ SC 46 ✓ ✓ ✓

One may ask, does strong split duality hold even when subjected to 1-person deviation? For

states with two congressional districts, our analysis shows this to be true. Idaho, Montana, and West

Virginia admit county clusterings with two clusters, which can be considered as districts, so their

minimum number of county splits is zero. Meanwhile, Maine, New Hampshire, and Rhode Island

only admit the trivial county clustering (with all counties in one cluster), meaning that at least one

county split is required (by weak split duality), and a quick search of DRA (2023) finds many maps

that achieve this bound (e.g., Maine’s enacted map).
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Finally, we remark that the maximum county clustering problem becomes extremely challenging

for 1-person deviation. For example, when we apply our approach to Iowa’s congressional districts,

it initially finds a county clustering with three clusters, but the best lower and upper bounds remain

at [3,4] even after 24 hours of MIP computation.

6. Conclusion and Future Work

In this paper, we consider the task of partitioning a state into 𝑘 contiguous and population-balanced

districts using a minimum number of county splits. Contrary to conventional wisdom, the minimum

number of county splits is generally not equal to 𝑘 −1. However, as observed by Carter et al. (2020),

there is a close connection between this problem and the maximum county clustering problem.

Indeed, we have a powerful tool in weak split duality, which says that the minimum number of

county splits 𝑠 is at least 𝑘 − 𝑐, where 𝑐 is the maximum number of county clusters. Carter et

al. posited that strong split duality holds as well, which we have empirically confirmed over a large

set of real-life districting instances. This is despite the fact that strong split duality generally does

not hold, and the split duality gap 𝑔 = 𝑠 − (𝑘 − 𝑐) can be arbitrarily large.

To solve the minimum county splits problem, we propose a three-step Cluster-Sketch-Detail

approach, which heavily exploits integer programming techniques. Ultimately, it provides the

first exact approach for the minimum county splits problem and the first answers to the question

“how many county splits are mathematically necessary to satisfy basic criteria like contiguity and

population balance?” across a large set of real-life districting instances. The answers could be used

to challenge “bad” maps in court for states that place strict requirements on the number of splits.

We do not claim that the computer-generated maps from our experiments are “good” or that they

should be enacted in practice. They do not consider the Voting Rights Act (VRA) or any laws that

vary by state. We also do not evaluate the partisan performance of the computer-generated maps

nor of county splitting restrictions in general; for more on these subjects, see Chen et al. (2013),

Gurnee and Shmoys (2021), Kenny et al. (2023), Duchin and Schoenbach (2023). However, as also

suggested Carter et al. (2020), it is possible for map drawers to use the maximum county clusterings

as starting points and incorporate the VRA, state-specific laws, or other criteria in the Sketch and

Detail steps. To achieve a minimum number of county splits, all that is required is to limit each

cluster to 𝑘′ − 1 county splits, where 𝑘′ is the cluster’s size. The maximum county clusterings

generated in our experiments are typically not unique, and using other maximum county clusterings

adds another layer of flexibility to the map-drawing process. Enumerating them is an interesting
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question for future research. In some cases, legal or political considerations not considered in this

paper may make it impossible to achieve the minimum number of county splits reported here; in

these cases, the results provided here may still give insightful baselines for comparison. In future

research, it would be interesting to investigate to what extent the VRA or other constraints force a

larger number of county splits. Understanding the precise tradeoffs between the number of county

splits and other legitimate goals is an interesting task for future work.

Notes
1First, for every edge {𝑎, 𝑏}, we apply the inequality for 𝑆 = 𝑁 ({𝑎, 𝑏}) (if this 𝑆 satisfies the

theorem’s conditions), where 𝑁 (·) denotes the open neighborhood. Second, for every vertex 𝑏 and

every subset 𝑁′ ⊆ 𝑁 [𝑏] that contains 𝑏, we apply the inequality for 𝑆 = 𝑁 (𝑁′) (if this 𝑆 satisfies the

theorem’s conditions), where 𝑁 [·] denotes the closed neighborhood. Empirically, we have found

these sets 𝑆 to be most helpful, cf. Oehrlein and Haunert (2017). Also, for these sets 𝑆, it is relatively

straightforward to check the theorem’s conditions.
2In an easy case, each of Arizona’s 30 State House districts elects two members, so we simply

use 𝑘 = 30. We apply the same approach to the state house districts of Idaho, New Jersey, North

Dakota, and Washington. However, a few other states have multi-member districts of varying size,

which we handle as follows. New Hampshire’s State House has multi-member districts with sizes

varying between 1 to 11 members, with some of the districts being floterial (meaning that they

“float” above other districts), so we simplify things by setting 𝑘 = 400 equal to the number of seats.

We apply the same approach to Vermont’s State Senate and State House. Maryland’s State House

has 47 multi-member districts with three members in each, some of which are subdivided into three

single-member districts or into a two-member district and a single-member district; we simply set

𝑘 = 47. Similarly, South Dakota’s State House has 35 multi-member districts with two members in

each, two of which are subdivided into single-member districts; we simply set 𝑘 = 35.
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Appendix A: Full MIP for Sketch

For the Sketch step, the full MIP is as follows, where the objective is to maximize the number

of preserved edges. Again, for notational simplicity, this MIP is written across the entire set of

counties 𝐶 with size 𝑘 , but in practice it should be applied to each county cluster separately.

max
∑︁

𝑒∈𝐸 (𝐶)

𝑘∑︁
𝑗=1

𝑦𝑒 𝑗

s.t. 𝑦𝑒 𝑗 ≥
∑︁
𝑖∈𝑒

𝑥𝑖 𝑗 − 1 ∀𝑒 ∈ 𝐸 (𝐶), ∀ 𝑗 ∈ [𝑘]

𝑘∑︁
𝑗=1

𝑦𝑒 𝑗 ≤ 1 ∀𝑒 ∈ 𝐸 (𝐶)

𝑦𝑒 𝑗 ≤ 𝑥𝑖 𝑗 ∀𝑖 ∈ 𝑒 ∈ 𝐸 (𝐶), ∀ 𝑗 ∈ [𝑘]∑︁
𝑖∈𝐶

𝑠𝑖 = 𝑘 − 1

𝑘∑︁
𝑗=1

𝑥𝑖 𝑗 = 𝑠𝑖 + 1 ∀𝑖 ∈𝐶

𝑘∑︁
𝑗=1

𝑧𝑖 𝑗 = 1 ∀𝑖 ∈𝐶

𝐿 ≤
∑︁
𝑖∈𝐶

𝑝𝑖𝑧𝑖 𝑗 ≤𝑈 ∀ 𝑗 ∈ [𝑘]

𝑥𝑖 𝑗 ∈ {0,1} ∀𝑖 ∈𝐶, ∀ 𝑗 ∈ [𝑘]

𝑦𝑒 𝑗 ∈ {0,1} ∀𝑒 ∈ 𝐸 (𝐶), ∀ 𝑗 ∈ [𝑘]

0 ≤ 𝑧𝑖 𝑗 ≤ 𝑥𝑖 𝑗 ∀𝑖 ∈𝐶, ∀ 𝑗 ∈ [𝑘] .

After solving this MIP, we set the number of preserved edges equal to its optimal objective value

and apply a secondary objective to minimize the sum of squares of counties touched by the districts

min
𝑘∑︁
𝑗=1

|𝐶 |∑︁
𝑡=1

𝑡2𝑏 𝑗 𝑡 ,
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which requires the following additional constraints:

∑︁
𝑖∈𝐶

𝑥𝑖 𝑗 =

|𝐶 |∑︁
𝑡=1

𝑡𝑏 𝑗 𝑡 ∀ 𝑗 ∈ [𝑘]

|𝐶 |∑︁
𝑡=1

𝑏 𝑗 𝑡 = 1 ∀ 𝑗 ∈ [𝑘]

𝑏 𝑗 𝑡 ∈ {0,1} ∀ 𝑗 ∈ [𝑘], ∀𝑡 = 1,2, . . . , |𝐶 |.
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Appendix B: Final Results for Congress, State Senate, and State House

Table 5: Final Congressional Results (excludes HI and trivial states).
obvious max split min enacted

state |𝐶 | 𝑘 𝐿 𝑈 LB clusters LB splits splits
AL 67 7 714,166 721,342 0 7 0 0 6
AR 75 4 749,117 756,645 0 4 0 0 3
AZ 15 9 790,639 798,584 6 2 7 7 15
CA 58 52 756,549 764,152 39 11 41 41 72
CO 64 8 718,106 725,322 1 6 2 2 20
CT 8 5 717,583 724,794 3 1 4 4 10
FL 67 28 765,375 773,067 10 9 19 19 31
GA 159 14 761,311 768,961 2 12 2 2 21
IA 99 4 793,605 801,580 0 4 0 0 0
ID 44 2 914,956 924,150 0 2 0 0 1
IL 102 17 749,909 757,445 7 8 9 9 53
IN 92 9 750,178 757,717 1 8 1 1 8
KS 105 4 730,798 738,142 0 4 0 0 4
KY 120 6 747,218 754,727 1 5 1 1 6
LA 64 6 772,412 780,174 0 6 0 0 15
MA 14 9 777,197 785,007 5 2 7 7 22
MD 24 8 768,293 776,013 3 4 4 4 9
ME 16 2 677,774 684,585 0 2 0 0 1
MI 83 13 771,304 779,055 4 9 4 4 21
MN 87 8 709,746 716,878 1 6 2 2 12
MO 115 8 765,518 773,210 1 7 1 1 10
MS 82 4 736,619 744,021 0 4 0 0 4
MT 56 2 539,402 544,823 0 2 0 0 1
NC 100 14 741,943 749,398 2 11 3 3 13
NE 93 3 650,566 657,103 0 3 0 0 2
NH 10 2 685,321 692,208 0 1 1 1 5
NJ 21 12 770,213 777,953 3 3 9 9 20
NM 33 3 702,312 709,369 0 3 0 0 10
NV 17 4 772,273 780,034 2 2 2 2 5
NY 62 26 773,087 780,855 13 8 18 18 26
OH 88 15 782,697 790,563 3 11 4 4 14
OK 77 5 787,912 795,829 1 4 1 1 7
OR 36 6 702,679 709,740 1 5 1 1 16
PA 67 17 761,041 768,689 4 10 7 7 17
RI 5 2 545,947 551,432 1 1 1 1 1
SC 46 7 727,548 734,859 0 6 1 1 10
TN 95 9 764,032 771,710 1 7 2 2 11
TX 254 38 763,153 770,821 19 19 19 19 59
UT 29 4 813,815 821,993 1 3 1 1 7
VA 133 11 780,749 788,595 1 9 2 2 11
WA 39 10 766,676 774,380 4 6 4 4 11
WI 72 8 733,032 740,398 1 7 1 1 13
WV 55 2 892,374 901,342 0 2 0 0 0
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Table 6: Final State Senate Results (excludes HI).
obvious max split min enacted

state |𝐶 | 𝑘 𝐿 𝑈 LB clusters LB splits splits
AK 30 20 34,837 38,503 12 7 13 13 19
AL 67 35 136,374 150,728 13 19 16 16 35
AR 75 35 81,742 90,345 14 21 14 14 51
AZ 15 30 226,465 250,302 22 6 24 24 44
CA 58 40 939,033 1,037,878 23 14 26 26 56
CO 64 35 156,716 173,211 22 13 22 22 42
CT 8 36 95,157 105,173 31 4 32 32 49
DE 3 21 44,784 49,497 18 3 18 18 20
FL 67 40 511,532 565,377 18 16 24 24 32
GA 159 56 181,720 200,848 23 31 25 25 60
IA 99 50 60,618 66,997 20 29 21 21 46
ID 44 35 49,919 55,173 19 14 21 21 25
IL 102 59 206,304 228,019 39 20 39 39 135
IN 92 50 128,926 142,496 20 28 22 22 48
KS 105 40 69,775 77,119 19 21 19 19 36
KY 120 38 112,646 124,503 11 26 12 12 21
LA 64 39 113,459 125,401 20 18 21 21 77
MA 14 40 166,961 184,535 31 6 34 34 59
MD 24 47 124,859 138,001 35 10 37 37 45
ME 16 35 36,979 40,870 24 8 27 27 40
MI 83 38 251,934 278,452 19 18 20 20 64
MN 87 67 80,913 89,430 38 26 41 41 100
MO 115 34 171,976 190,078 14 20 14 14 16
MS 82 52 54,101 59,795 19 29 23 23 64
MT 56 50 20,601 22,768 30 19 31 31 56
NC 100 50 198,349 219,227 20 28 22 22 24
ND 53 47 15,748 17,405 28 18 29 29 49
NE 93 49 38,030 42,032 26 21 28 28 37
NH 10 24 54,528 60,266 19 4 20 20 40
NJ 21 40 220,614 243,836 28 10 30 30 56

NM 33 42 47,897 52,938 28 13 29 29 64
NV 17 21 140,447 155,230 17 3 18 18 21
NY 62 63 304,623 336,687 42 20 43 43 66
OH 88 33 339,682 375,436 12 20 13 13 20
OK 77 48 78,363 86,610 22 25 23 23 59
OR 36 30 134,180 148,303 17 11 19 19 47
PA 67 50 247,052 273,056 26 23 27 27 47
RI 5 38 27,435 30,322 33 3 35 35 41
SC 46 46 105,707 116,833 26 16 30 30 68
SD 66 35 24,067 26,600 17 16 19 19 29
TN 95 33 198,949 219,890 13 20 13 13 15
TX 254 31 893,169 987,186 12 19 12 12 41
UT 29 29 107,174 118,455 22 7 22 22 41
VA 133 40 204,996 226,574 16 24 16 16 34
VT 14 30 20,365 22,507 23 6 24 24 18
WA 39 49 149,389 165,113 34 13 36 36 59
WI 72 33 169,668 187,527 12 20 13 13 73
WV 55 17 100,238 110,788 2 13 4 4 13
WY 23 31 17,678 19,538 21 9 22 22 25
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Table 7: Final State House Results (excludes HI).
obvious max split min enacted

state |𝐶 | 𝑘 𝐿 𝑈 LB clusters LB splits splits
AK 30 40 17,419 19,251 28 10 30 30 39
AL 67 105 45,458 50,242 71 29 76 76 115
AR 75 100 28,610 31,621 61 33 67 67 128
AZ 15 30 226,465 250,302 22 6 24 24 44
CA 58 80 469,517 518,939 57 20 60 60 95
CO 64 65 84,386 93,267 46 18 47 47 73
CT 8 151 22,687 25,074 139 8 143 143 162
DE 3 41 22,938 25,352 38 2 39 39 40
FL 67 120 170,511 188,459 89 26 94 94 112
GA 159 180 56,536 62,486 118 57 123 123 209
IA 99 100 30,309 33,498 54 38 62 62 92
ID 44 35 49,919 55,173 19 14 21 21 25
IL 102 118 103,152 114,009 85 31 87 87 220
IN 92 100 64,463 71,248 55 39 61 61 129
KS 105 125 22,328 24,678 87 34 91 91 127
KY 120 100 42,806 47,311 47 45 55 55 80
LA 64 105 42,142 46,577 72 29 76 76 116
MA 14 160 41,741 46,133 145 10 150 150 182
MD 24 47 124,859 138,001 35 10 37 37 67
ME 16 151 8,572 9,473 137 11 140 140 166
MI 83 110 87,032 96,192 73 32 78 78 154
MN 87 134 40,457 44,715 92 34 100 100 176
MO 115 163 35,873 39,648 110 47 116 116 137
MS 82 122 23,060 25,486 79 36 86 86 181
MT 56 100 10,301 11,384 74 22 78 78 99
NC 100 120 82,646 91,344 71 40 80 80 80
ND 53 47 15,748 17,405 28 18 29 29 53
NH 10 400 3,272 3,616 375 10 390 390 154
NJ 21 40 220,614 243,836 28 10 30 30 56

NM 33 70 28,738 31,762 52 15 55 55 86
NV 17 42 70,224 77,615 35 4 38 38 43
NY 62 150 127,942 141,408 115 26 124 124 179
OH 88 99 113,228 125,145 57 35 64 64 77
OK 77 101 37,242 41,161 67 30 71 71 134
OR 36 60 67,090 74,151 44 13 47 47 79
PA 67 203 60,851 67,255 158 39 164 164 186
RI 5 75 13,901 15,363 70 4 71 71 75
SC 46 124 39,214 43,341 94 24 100 100 145
SD 66 35 24,067 26,600 17 16 19 19 31
TN 95 99 66,317 73,296 55 36 63 63 74
TX 254 150 184,589 204,018 99 50 100 100 101
UT 29 75 41,441 45,802 59 12 63 63 72
VA 133 100 81,999 90,629 55 38 62 62 98
VT 14 150 4,073 4,501 137 12 138 138 118
WA 39 49 149,389 165,113 34 13 36 36 59
WI 72 99 56,556 62,509 63 30 69 69 159
WV 55 100 17,041 18,834 70 24 76 76 89
WY 23 62 8,839 9,769 49 10 52 52 56
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