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Abstract. In the academic literature and in expert testimony, the Polsby-Popper score is the most popular way to measure the

compactness of a political district. Given a district with area 𝐴 and perimeter 𝑃, its Polsby-Popper score is given by (4𝜋𝐴)/𝑃2.

This score takes values between zero and one, with circular districts achieving a perfect score of one. In this paper, we propose

the first mathematical optimization models to draw districts (or districting plans) with optimum Polsby-Popper score. Specifically,

we propose new mixed-integer second-order cone programs (MISOCPs), which can be solved with existing optimization software.

Experiments show that they can identify the most compact single districts at the precinct level and the most compact plans at the

county level. Then, we turn to the problem of drawing compact plans with a large number of majority-minority districts. This is the

task faced by plaintiffs in Voting Rights Act cases who must show that an alternative plan exists in which the minority group could

achieve better representation, a legal hurdle known as the first Gingles precondition. For this task, we propose new MISOCP-based

heuristics that often outperform enacted maps on standard criteria, sometimes by substantial margins. They also perform well

against state-of-the-art heuristics like short bursts and can be used to polish maps with hundreds of thousands of census blocks.

Our techniques could assist plaintiffs when seeking to overturn maps that dilute the voting strength of minority groups. Our code is

available on GitHub.
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1. Introduction

In the academic literature and in expert testimony, the Polsby-Popper score is the most popular

way to measure the compactness of a political district. This score was first proposed for districting

by Polsby and Popper (1991) in a law journal, although the same score had been proposed for

measuring the roundness of sand grains in a paleontology journal 64 years prior (Cox 1927), and

the ideas behind it date back 3,000 years to Dido’s problem and ancient Carthage (Osserman 1978,
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Bandle 2017). The Polsby-Popper score of a district is a function of its area 𝐴 and perimeter 𝑃:

(Polsby-Popper score)
4𝜋𝐴
𝑃2 .

The normalizing factor 4𝜋 ensures that the score takes values between 0 and 1, with circular districts

achieving a perfect score of 1—a consequence of the well-known isoperimetric inequality.

Compactness—whether measured via the Polsby-Popper score or otherwise—is one of many

criteria that are used when partitioning a state into political districts. Other traditional redistricting

principles state that districts should have nearly equal populations (“population balance”), that they

should be contiguous on the map, and that they should not unnecessarily divide political subdivisions

such as counties, cities, and towns. In response to recent partisan gerrymandering, reform groups

have also sought new laws to promote competitiveness, partisan fairness, or proportionality, or to

promote the use of independent redistricting commissions to draw district lines (instead of state

legislatures who have an obvious conflict of interest).

Federal law in the USA also requires states to abide by the Voting Rights Act (VRA) of 1965,

which prohibits racial discrimination in voting (Hebert et al. 2010, Davis et al. 2019, Gordon and

Spencer 2022). Section 2 of the VRA has been used to overturn maps that dilute the voting power

of minority groups. Under the Supreme Court’s ruling in Thornburg v. Gingles (1986), a successful

vote dilution claim must first show the “compactness” precondition, i.e., that the minority group

is “sufficiently large and geographically compact to constitute a majority in a single-member dis-

trict”. That is, the court requires plaintiffs to provide an alternative map (“demonstration districts”)

with more majority-minority districts. The Supreme Court also ruled that, when drawing minority-

opportunity districts, plans must abide by traditional districting principles “including but not limited

to compactness, contiguity, respect for political subdivisions or communities defined by actual

shared interests” and not let race be the “predominant factor” lest they be ruled a racial gerrymander

in violation of the Equal Protection Clause of the 14th Amendment, see Shaw v. Reno (1993).

Following the Supreme Court case Allen v. Milligan (2023), Alabama was required to draw a

second Black-opportunity district to satisfy the VRA. Much of the expert testimony in this case

concerned the ability to draw suitable demonstration districts, with particular attention being paid

to the tradeoffs between political subdivision preservation, district compactness, and minority rep-

resentation. Pertinently for us, an amicus brief was filed in this case by a team of computational
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redistricting experts who wrote that “optimization algorithms are well-suited to the task of gener-

ating [remedial plans in Section 2 litigation] . . . as they can identify innovative combinations of

geography that better comply with multiple traditional redistricting principles than any individual

mapmaker is likely to find manually through trial and error” (DeFord et al. 2022).

1.1. Our Contributions

In light of this discussion, it is clear that political districting involves tradeoffs between numerous

competing criteria and that generating maps that perform well on them can have huge impacts in

the legal arena. To do this in a transparent manner, we propose to use mathematical optimization.

To have the biggest impact, we would like to use the Polsby-Popper score to measure compactness

as it is the most popular score, but its nonlinear nature makes it mathematically distinct from

the (integer) linear optimization models found in the operations research literature on districting.

Further, districting is already an NP-hard combinatorial problem without this nonlinearity, which

may scare off the disinclined. Nevertheless, we show that the Polsby-Popper score can be captured

in a mixed-integer second-order cone program (MISOCP) which is a type of optimization problem

that some solvers have only recently begun to support. Additionally, we show how to encode

the equivalent inverse or 𝐿−1 average Polsby-Popper score (Chikina et al. 2017, Duchin 2018)

and the Schwartzberg score (Schwartzberg 1965) as MISOCPs. Despite the challenges posed by

nonlinearity and NP-hardness, we find that our optimization models can identify the most compact

single districts at the precinct level and identify the most compact plans at the county level.

Then, we turn to the problem of drawing compact plans with a large number of majority-minority

districts. This is the first legal hurdle—the first Gingles precondition—that plaintiffs must clear to

bring a vote dilution claim under Section 2 of the VRA. This task can be difficult, and heuristic

optimization approaches have provided key assistance in several recent court cases, see Buchanan

(2023), with “short bursts” being one of the primary tools (Cannon et al. 2023, Becker et al.

2021). In this paper, we provide another powerful tool that uses the newly proposed MISOCPs as

subroutines. Our approach has three distinct phases, as summarized below.

1. Carve: Carve a compact majority-minority district from the state; repeat as able.

2. Complete: District the rest of the state in a recursive bipartition fashion.

3. Cleanup: Make the plan more compact, while retaining its other properties.

We find that the approach works quite well, often outperforming enacted maps, both in terms of

the number of majority-minority districts and in terms of other traditional districting criteria like
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compactness and splitting, sometimes by substantial margins. This “cushion” provides practitioners

with much-needed flexibility to fine-tune the computer-generated plans based on their domain

expertise and local knowledge, without worrying that such tweaks will cause the plan’s measurables

to dip below those of the enacted plan. Our implementation is also flexible in the sense that it

has several “knobs” that can be turned to prioritize some criteria over others (e.g., Polsby-Popper

score, population deviation, minority percentage, county splitting). The approach also fares well

against state-of-the-art heuristics such as short bursts, both in terms of the number of majority-

minority districts and the performance on other districting criteria. We will also see that Cleanup

can polish Gingles demonstration plans built from nearly 200,000 census blocks. Our python code

and computational results are publicly available at:

https://github.com/AustinLBuchanan/Polsby_Popper_optimization

1.2. Outline

Section 2 provides the necessary background and literature review. Section 3 proposes MISOCPs

for drawing compact districts and plans. We run a limited set of experiments on precinct-level

and county-level instances (where each vertex represents a precinct and county, respectively) to

show their computational limits. Section 4 proposes to use the MISOCPs to draw compact plans

with many majority-minority districts, motivated by the first Gingles hurdle to bringing a Section

2 VRA case. The proposed approach has three phases: Carve, Complete, and Cleanup. Although

naive implementations of these phases lead to subpar results, small and intuitive tweaks lead to

a powerful tool that can assist plaintiffs in meeting the first Gingles precondition. We experiment

with the approach on states subject to recent and ongoing VRA litigation in Section 5 and compare

against state-of-the-art heuristics such as short bursts. We conclude in Section 6.

2. Background and Literature Review

We have already seen that traditional redistricting principles include population balance, contiguity,

and compactness. Current practice in the USA is that congressional districts often differ in pop-

ulation by just one person, e.g., each of Alabama’s seven congressional districts has a population

of either 717,754 or 717,755 according to the 2020 Census. However, larger deviations of up to

1% have been justified. For example, in Tennant v. Jefferson County (2012) the US Supreme Court

upheld West Virginia’s three congressional districts that had populations of 615,991 and 616,141

and 620,862 that, when compared to the ideal district population 617,664.67, had a total deviation

https://github.com/AustinLBuchanan/Polsby_Popper_optimization
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of (620,862 − 615,991)/617,664.67 = 0.79%. Still, a majority of states enact districts with 1-

person deviation to avoid litigation. Meanwhile, when drawing state senate and state house districts,

larger deviations approaching 10% are typical in practice and permitted by the courts (Hebert et al.

2010, Davis et al. 2019). For example, California’s State Senate districts vary in population from

938,834 at the low end, to 1,036,376 at the high end, for a total deviation of nearly 100,000 people,

or 9.87%. Contiguity is often required by state law and is usually not a point of contention. Even

when not required to do so, states typically enact contiguous districts.

Meanwhile, compactness is harder to define and open to interpretation. Although dozens of

alternative compactness scores have been proposed, few states specify which ones to use, and many

people simply rely on the “eyeball test”. Indeed, the mathematician Peyton Young opined in 1988

that, due to the flaws of most compactness scores, “compactness should either be abandoned as

a standard altogether, or left in the domain of the dictionary definition, to be interpreted by the

courts in the light of the circumstances”. We refer the reader to Young (1988) for an overview

of various compactness scores (e.g., Reock, Schwartzberg, Taylor, Boyce-Clark, length-width,

perimeter, moment-of-inertia) and their strengths and weaknesses, see also Niemi et al. (1990),

Bar-Natan et al. (2020), Duchin (2022).

One criticism of perimeter-related scores, like the Polsby-Popper score, is that they suffer from

the Coastline Paradox in which boundary lengths are not well-defined and depend on the choice

of map projection and the “size of your ruler” (Bar-Natan et al. 2020, Barnes and Solomon 2021).

Another criticism can be summarized with the slogan “land does not vote; people do”. In 2010,

47% of all census blocks were uninhabited (Freeman 2014); reassigning these blocks to different

districts can significantly change the Polsby-Popper score, but the districts would function the same.

Or, imagine two counties separated by a river; if the river winds back and forth in a fractal-like

manner, then the Polsby-Popper score would almost require these two counties to be in the same

district, but if the river flowed straight then it may be convenient for them to be in different districts.

As mathematician and expert witness Moon Duchin has put it, “it is not a great state of affairs when

your metrics are heavily impacted by irrelevant factors but not impacted at all by important features

of the problem you are studying” (Duchin 2022).

Nevertheless, compactness scores feature prominently in expert testimony and legal briefs. As

law professor and mapmaker Nate Persily observed, “judges tend to like compactness measures

because they have the feel of objective criteria against which you can evaluate whether one plan

is better than another. . . Generally speaking, judges are also struck by the aesthetics, but they
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lean on the measures whenever possible” (Duchin and Walch 2022, Persily 2004). In particular,

Duchin (2018) has declared the Polsby-Popper score to be “the most-cited compactness score in

the redistricting literature and in expert testimony”.

2.1. Minority Representation

Another key criterion in the USA is the Voting Rights Act (VRA) of 1965 which prohibits racial

discrimination in voting. The VRA was originally passed in response to widespread disenfran-

chisement of Black citizens, particularly in southern states, and has been reauthorized and amended

multiple times (Laney 2008, Gordon and Spencer 2022). For example, in 1975 protections were

extended to “language minorities”, which Congress defined as “persons who are American Indian,

Asian American, Alaskan Natives or of Spanish heritage” (Ancheta 2007). In the 1980 case Mobile

v. Bolden, the Supreme Court interpreted the VRA as forbidding discriminatory intent. Congress,

not happy with this interpretation, clarified in 1982 that the VRA forbids discriminatory effects.

Since 1965, the number of Black elected officials has increased 30-fold, with similar increases

in Hispanic representation (Gordon and Spencer 2022). Without the VRA, this would have been

unlikely (Grofman 1982, Chen and Stephanopoulos 2021, Duchin and Spencer 2021).

Section 2 of the VRA has been used to overturn maps that dilute the voting power of minority

groups. To bring a Section 2 claim, one must first pass the three Gingles prongs (or “preconditions”)

established by the Supreme Court in the 1986 case Thornburg v. Gingles: “First, the minority group

must be able to demonstrate that it is sufficiently large and geographically compact to constitute a

majority in a single-member district. . . Second, the minority group must be able to show that it is

politically cohesive. . . Third, the minority must be able to demonstrate that the white majority votes

sufficiently as a bloc to enable it. . . [to] usually defeat the minority’s preferred candidate”. The

Supreme Court elaborated in Bartlett v. Strickland (2009) that the minority group must constitute

a numerical majority (> 50%) among the voting age population in the demonstration districts.

After the Gingles hurdles are cleared, courts consider the “totality of the circumstances” and may

require new maps (Persily 2004). In the remedial map, it is not required for the minority group

to constitute a numerical majority; minority opportunity districts are also permitted in which the

minority group constitutes less than 50% of the district yet is able to elect preferred candidates with

crossover support from other groups (Grofman et al. 2001, Lublin et al. 2020, Becker et al. 2021).

Meanwhile, the Supreme Court has found racial gerrymandering to be unconstitutional, violating

the Equal Protection Clause of the 14th Amendment. In Shaw v. Reno (1993), the court overturned
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North Carolina’s 12th district, finding it so “bizarre” that it only could have been drawn on the basis

of race. This district was reported to have a Polsby-Popper score of 0.01 (Hofeller 2015). Likewise,

in Miller v. Johnson (1995), the court overturned Georgia’s 11th district, finding it improper for

map drawers to use race as the “predominant factor” to the subordination of “traditional race-

neutral redistricting principles, including but not limited to compactness, contiguity, [and] respect

for political subdivisions”. In 2010, it was observed that every district overturned based on Shaw

was built using an overreliance on census blocks, rather than from larger units like census tracts or

precincts (Hebert et al. 2010). Figure 1 shows the overturned districts from Shaw and Miller.

Figure 1 The US Supreme Court overturned North Carolina’s 12th district in Shaw v. Reno (1993) and Georgia’s 11th district

in Miller v. Johnson (1995).

2.2. Variants of the Polsby-Popper score

As we have seen, the Polsby-Popper score of district 𝐷 is defined as follows.

(Polsby-Popper score) PP(𝐷) :=
4𝜋𝐴𝐷

𝑃2
𝐷

,

where 𝐴𝐷 is the area of the district and 𝑃𝐷 its perimeter. The normalizing factor 4𝜋 ensures that

the score takes values between 0 and 1, with circular districts achieving a perfect score of 1.

Example. Calculations below show that the Polsby-Popper scores of disks ( ), squares (■), and

regular hexagons ( ) are approximately 1, 0.7854, and 0.9069, respectively.

PP( ) =
4𝜋𝐴 
𝑃2
 

=
4𝜋(𝜋𝑟2)
(2𝜋𝑟)2 = 1.
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PP(■) = 4𝜋𝐴■

𝑃2
■

=
4𝜋(𝑡2)
(4𝑡)2 =

𝜋

4
≈ 0.7854.

PP( ) =
4𝜋𝐴
𝑃2 =

4𝜋(3
√

3𝑡2/2)
(6𝑡)2

=
𝜋
√

3
6

≈ 0.9069. □

If we take the multiplicative inverse (or reciprocal) of the Polsby-Popper (PP) score, we get

an equivalent score in the sense that it ranks districts by compactness in the same way, but with

smallest-score districts being most compact:

(Inverse PP score) PP(𝐷)−1 :=
𝑃2
𝐷

4𝜋𝐴𝐷

.

For example, the inverse Polsby-Popper scores of disks, squares, and regular hexagons are 1,

4/𝜋 ≈ 1.2732, and 6/(𝜋
√

3) ≈ 1.1027, respectively.

Taking the square root of the inverse Polsby-Popper score gives the Schwartzberg

score (Schwartzberg 1965, Duchin 2022):

(Schwartzberg score) PP(𝐷)−1/2 :=
𝑃𝐷√
4𝜋𝐴𝐷

,

which also ranks districts in the same way.

Since these scores are equivalent, one could find an optimally compact single district by opti-

mizing any one of the scores (namely, maximizing PP(𝐷) or minimizing PP(𝐷)−1 or PP(𝐷)−1/2).

Similarly, we can impose equivalent compactness constraints in terms of any one score. However,

when optimizing or constraining the compactness of an entire districting plan, this is less clear.

Should one aggregate the individual district compactness scores into a single score for the entire

plan? If so, how? Here we review some existing approaches.

Years ago, the popular mapping software Maptitude began reporting the average Polsby-Popper

score (along with the minimum, maximum, and standard deviation), so it may come as no sur-

prise that the “straight average” has proliferated throughout districting circles (pun intended). This
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includes websites like Dave’s Redistricting App (DRA 2023), Harvard’s ALARM project (McCar-

tan et al. 2022a), and the Princeton Gerrymandering Project (Princeton Gerrymandering Project

2023) (which also reports the minimum score). The straight average is also the usual number

reported in court. For example, Duchin (2021), in her expert report in the case Allen v. Milligan,

reported the average Polsby-Popper score for Alabama’s enacted plan as 0.222, as well as the average

scores of four demonstration plans A, B, C, and D, as 0.256, 0.282, 0.255, and 0.249, respectively.

Other experts in this case also report the average, including William S. Cooper (for the plaintiffs)

and Thomas M. Bryan (for the defendants).

Meanwhile, in her expert report in League of Women Voters of Pennsylvania v. Commonwealth

of Pennsylvania, Duchin (2018) uses:

“what mathematicians would call an 𝐿−1 average Polsby-Popper score: we average the recipro-

cals of the PP scores of the 18 districts. The reason to average reciprocals instead of the straight

scores is to attach a heavier penalty to plans with one extremely low score among the districts.”

The equivalent sum of inverse Polsby-Popper scores was proposed earlier by Chikina et al. (2017)

for the same reason. We will see that the average (or sum) inverse Polsby-Popper score is convenient

for mathematical optimization modeling because it can be reformulated in a convex way.

2.3. Computational Approaches for Districting

Because of the population balance and contiguity constraints, districting problems are generally

NP-hard (Dyer and Frieze 1985, Altman 1997) and are not expected to admit polynomial-time

algorithms. Consequently, many researchers have proposed heuristics, beginning as early as 1961

with flood fill (Vickrey 1961). New heuristics are being proposed all the time, and we invite readers

to consult surveys on districting heuristics by Ricca et al. (2013) and Becker and Solomon (2022).

Another legally impactful line of computational work is called ensemble analysis (Chen and

Stephanopoulos 2021, Duchin and Spencer 2021, DeFord and Duchin 2022). Here the idea is to

generate a large collection of districting plans, ideally drawn randomly from an explicit target

distribution (McCartan and Imai 2023, Clelland et al. 2021, Cannon et al. 2022, Procaccia and

Tucker-Foltz 2022) considering the “rules of the game” like traditional redistricting principles and

the Voting Rights Act. If an enacted plan is an outlier in this (empirical) distribution of plans,

say, with respect to the number of seats won by a particular party, then this may suggest that

it was intentionally drawn to be a partisan gerrymander. Many ensemble approaches are based

on a Markov chain Monte Carlo (MCMC) framework that moves from one districting plan to a
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neighboring or similar districting plan in a random walk (Fifield et al. 2015, Cho and Liu 2018,

Adler and Wang 2019, Autry et al. 2021). To mitigate or avoid the dependence on initial conditions,

more recent approaches use larger search neighborhoods like recombination (DeFord et al. 2021)

or avoid the Markov chain approach altogether (McCartan and Imai 2023, McCartan et al. 2022b).

Recent approaches also do a better job of preserving political subdivisions like counties (Autry

et al. 2021, McCartan and Imai 2023, Clelland et al. 2022) and drawing majority-minority or

minority-opportunity districts (Cannon et al. 2023, Becker et al. 2021).

In particular, the short bursts approach of Cannon et al. (2023) is arguably the most prominent and

successful approach for drawing large numbers of majority-minority districts. It works by repeatedly

taking a random walk for a small number of steps (called the “burst length”) and restarting the

random walk from the best-performing plan within this burst. Surprisingly, this simple approach

empirically outperforms the “biased random walks” that are common in local search as well as

popular metaheuristics like simulated annealing (MGGG 2024c).

Many optimization-based approaches have also been proposed, beginning as early as 1963

using facility location integer programming models and transportation techniques (Weaver and

Hess 1963, Hess et al. 1965). Other integer programming models have been proposed based on

exponentially many set partitioning variables (Garfinkel and Nemhauser 1970, Mehrotra et al. 1998)

or polynomially many assignment or labeling variables, see Validi and Buchanan (2022). Many

of these optimization models seek compactness as their objective (Hess et al. 1965, Hojati 1996,

Validi et al. 2022, Validi and Buchanan 2022), although more recent models also consider partisan

fairness (Swamy et al. 2023, Gurnee and Shmoys 2021), minority representation (Önal and Patrick

2016, Arredondo et al. 2021, Fravel et al. 2024), and political subdivision preservation (Birge 1983,

Önal and Patrick 2016, Shahmizad and Buchanan 2023).

Challenges faced by these optimization models include the contiguity constraints and the large

size of districting instances. A popular way to impose contiguity uses the flow-based constraints

of Shirabe (2005, 2009), see also Oehrlein and Haunert (2017), Validi et al. (2022). Another

approach is to use cut-based or separator-based constraints. The number of these constraints grows

exponentially in the number of geographic units, so they are usually applied in a branch-and-cut

fashion (Oehrlein and Haunert 2017, Validi et al. 2022, Validi and Buchanan 2022), see also Carvajal

et al. (2013), Buchanan et al. (2015), Wang et al. (2017), Fischetti et al. (2017). Another popular

approach uses the tree-based constraints of Zoltners and Sinha (1983) or the subsequent distance-

based (Mehrotra et al. 1998, Cova and Church 2000, Caro et al. 2004, Önal and Patrick 2016,
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Gurnee and Shmoys 2021) or DAG-based generalizations (Shahmizad and Buchanan 2023). These

constraints are fast in practice and always return contiguous solutions, but are invalid in the sense

that they cut off some solutions. Zhang et al. (2024) propose a perfect or integral linear-size model

for partitioning the 𝑛 nodes of a planar graph into 𝑘 contiguous districts, but unfortunately struggle

to impose population balance efficiently.

All of these optimization models are mixed-integer linear programs, originally or after refor-

mulation. In contrast, this paper proposes mixed-integer second-order cone programs (MISOCPs)

which have nonlinear constraints (Drewes 2009, Belotti et al. 2013, Benson and Sağlam 2013) and

are solved without linearization. With the additional expressiveness afforded by the second-order

cone constraints, we propose the first models for handling the Polsby-Popper score and variants.

2.4. Terminology and Notation

Consider a simple graph 𝐺 = (𝑉, 𝐸) whose vertices represent a state’s geographic units (e.g.,

counties, tracts, blocks) and whose edges indicate which geographic units are adjacent on the map.

Each geographic unit 𝑖 ∈𝑉 has an associated population 𝑝𝑖, and the population of a district 𝐷 ⊂ 𝑉

is indicated by the shorthand 𝑝(𝐷) :=
∑

𝑖∈𝐷 𝑝𝑖. The number of districts is 𝑘 . The ideal district

population equals the total population 𝑝(𝑉) divided by 𝑘 . The smallest and largest populations

permitted in a district are given by 𝐿 and 𝑈. A districting plan is a partition of the vertices into

𝑘 contiguous and population-balanced districts (𝐷1, 𝐷2, . . . , 𝐷𝑘 ). That is, each district 𝐷 𝑗 should

induce a subgraph 𝐺 [𝐷 𝑗 ] that is connected, and its population 𝑝(𝐷 𝑗 ) should lie between 𝐿 and 𝑈.

To calculate district areas, we need the area 𝑎𝑖 of each geographic unit 𝑖 ∈𝑉 . The area of district

𝐷 is then
∑

𝑖∈𝐷 𝑎𝑖. For perimeters, we need the border length 𝑏𝑒 between adjacent geographic units

𝑒 = {𝑢, 𝑣} ∈ 𝐸 , as well as the border length 𝑏𝑖 between geographic unit 𝑖 ∈𝑉 and the state’s exterior

(which is zero if 𝑖 belongs to the state’s interior). The subset of edges with one endpoint in district

𝐷 is denoted by 𝛿(𝐷). Then, the total perimeter of district 𝐷 is that which lies in the state’s interior,

𝑏(𝛿(𝐷)) =∑
𝑒∈𝛿(𝐷) 𝑏𝑒, plus that which coincides with the state’s border, 𝑏(𝐷) =∑

𝑖∈𝐷 𝑏𝑖.

2.5. Computational Setup

In this paper, we apply our techniques to districting instances from the USA. The raw input data

comes from the 2020 US Census (US Census Bureau 2021a,b), with initial processing conducted

by the (Redistricting Data Hub 2021), subsequent processing conducted by Daryl DeFord, and final

state-specific map projections by us using MGGG (2024a). In our computational experiments, we
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use a desktop PC with Windows 11 enterprise, Intel Core i9-13900K CPU at 3.00 GHz (5.80 GHz

turbo), 64 GB RAM. To solve MISOCPs, we use Gurobi v11.0.1. (In initial testing, we also used

the FICO Xpress Solver, with substantially similar running times.) Our code is written in Python,

handles graphs using NetworkX, and is available at:

https://github.com/AustinLBuchanan/Polsby_Popper_optimization.

3. The MISOCP Models

In this section, we propose a mixed-integer second-order cone program (MISOCP) for drawing a

single district with optimum Polsby-Popper score, which we apply to precinct-level instances from

Oklahoma and Alabama. We then extend the MISOCP to draw optimally compact districting plans,

which we apply to several county-level instances.

3.1. MISOCP for a Single District

We seek a single district 𝐷 ⊆ 𝑉 from graph 𝐺 = (𝑉, 𝐸) with optimum Polsby-Popper score that is

contiguous (i.e., the subgraph 𝐺 [𝐷] is connected) and population-balanced (i.e., 𝐿 ≤ 𝑝(𝐷) ≤𝑈).

To model this, we introduce a binary variable 𝑥𝑖 for each geographic unit 𝑖 ∈𝑉 indicating whether

it is selected in the district. We also use a binary variable 𝑦𝑒 indicating whether the edge 𝑒 ∈ 𝐸

belongs to the cut 𝛿(𝐷) between 𝐷 and 𝑉 \ 𝐷. Last, we use continuous variables 𝐴 and 𝑃 for the

area and perimeter of district 𝐷, respectively.

The Polsby-Popper objective 4𝜋𝐴/𝑃2 is not directly permitted in an MISOCP; however, a

satisfactory reformulation exists. Specifically, introduce a variable 𝑧 representing the inverse Polsby-

Popper score 𝑃2/(4𝜋𝐴) and minimize 𝑧 subject to the rotated second-order cone (or Lorentz cone)

constraint 𝑃2 ≤ 4𝜋𝐴𝑧. In an optimal solution, this constraint will hold at equality, meaning that 𝑧

will equal the inverse Polsby-Popper score, and 1/𝑧 will equal the Polsby-Popper score.

https://github.com/AustinLBuchanan/Polsby_Popper_optimization
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So, our MISOCP for drawing a single district is as follows. Its continuous relaxation is an SOCP

which admits specialized interior-point algorithms and the use of outer approximation cuts.

min 𝑧 (1a)

s.t. 𝑃2 ≤ 4𝜋𝐴𝑧 (1b)

𝑃 =
∑︁
𝑒∈𝐸

𝑏𝑒𝑦𝑒 +
∑︁
𝑖∈𝑉

𝑏𝑖𝑥𝑖 (1c)

𝐴 =
∑︁
𝑖∈𝑉

𝑎𝑖𝑥𝑖 (1d)

𝑥𝑢 − 𝑥𝑣 ≤ 𝑦𝑒 and 𝑥𝑣 − 𝑥𝑢 ≤ 𝑦𝑒 ∀𝑒 = {𝑢, 𝑣} ∈ 𝐸 (1e)

𝐿 ≤
∑︁
𝑖∈𝑉

𝑝𝑖𝑥𝑖 ≤𝑈 (1f)

𝐷 = {𝑖 ∈𝑉 | 𝑥𝑖 = 1} is connected (1g)

𝑥𝑖 ∈ {0,1} ∀𝑖 ∈𝑉 (1h)

𝑦𝑒 ∈ {0,1} ∀𝑒 ∈ 𝐸. (1i)

The objective (1a) minimizes the inverse Polsby-Popper score. Constraint (1b) ensures that 𝑧 is

at least the inverse Polsby-Popper score (and the objective will cause it to hold at equality).

Constraints (1c) and (1d) capture the perimeter and area of the district, respectively. Constraints (1e)

indicate that if one endpoint of edge 𝑒 = {𝑢, 𝑣} belongs to the district but the other endpoint does

not, then the edge 𝑒 between them is cut. This constraint permits 𝑦𝑒 = 1 even when 𝑥𝑢 = 𝑥𝑣, although

this will not occur in an optimal solution. Constraints (1f) impose population balance.

Constraint (1g) states that the district should be connected. As written, this is not a linear

constraint, but there are many ways to do this. For example, the flow-based constraints of Shirabe

(2005, 2009) are arguably the most popular contiguity constraints in the literature, especially if a

root vertex has been pre-selected. However, in our experiments, we use 𝑖, 𝑗-separator constraints:

𝑥𝑖 + 𝑥 𝑗 ≤ 1+
∑︁
𝑠∈𝑆

𝑥𝑠, (2)

where 𝑖 and 𝑗 are nonadjacent vertices and 𝑆 is an 𝑖, 𝑗-separator (i.e., 𝑖 and 𝑗 become disconnected if

the vertices 𝑆 are removed from the graph). Since there are exponentially many of these constraints,
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our implementation adds them on-the-fly, only as needed. In particular, we separate infeasible

integer points 𝑥∗ using the linear-time algorithm of Fischetti et al. (2017), which identifies a violated

inequality of the form (2) in which the separator 𝑆 is inclusion-wise minimal. This approach worked

well in previous research (Validi et al. 2022, Validi and Buchanan 2022) and suits our needs.

3.1.1. Application to Oklahoma In a quick example, we draw a single congressional district

for Oklahoma with optimum Polsby-Popper score. We use census VTDs (i.e., precincts) as our

geographic units, of which there are 1,947. According to the 2020 Census, Oklahoma had a popu-

lation of 3,959,353 to be divided over 𝑘 = 5 congressional districts. We permit a total population

deviation of 1% (±0.5%), setting bounds of 𝐿 =787,912 and 𝑈 =795,829. After two minutes of

computation on our desktop PC, the MISOCP solver Gurobi v11.0.1 returns an optimal solution

with an inverse Polsby-Popper score of roughly 1.3184, i.e., a Polsby-Popper score of roughly

0.7585, as depicted in Figure 2. By chance, the district largely follows the boundaries of Oklahoma

County, which has a rectangular shape.

Figure 2 A congressional district for Oklahoma with optimum Polsby-Popper score.

3.1.2. Application to Alabama In a second example, we draw congressional districts for

Alabama. Motivated by the Supreme Court case Allen v. Milligan (2023), we seek districts that

are majority-Black. Specifically, following the Supreme Court’s opinion in Bartlett v. Strickland

(2009), we impose that the Black voting age population (BVAP) is at least 50% of the district’s

VAP1. We denote the BVAP and VAP of geographic unit 𝑖 ∈ 𝑉 by BVAP𝑖 and VAP𝑖, respectively.

Our constraint is then:

∑︁
𝑖∈𝑉

BVAP𝑖𝑥𝑖 ≥
1
2

∑︁
𝑖∈𝑉

VAP𝑖𝑥𝑖 . (3)
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Given the emphasis on political subdivisions in Allen v. Milligan (2023), we also require that

any district consist of whole counties plus at most one partial (or split) county. To model this, let

𝐶 be the set of counties and introduce binary variables 𝛼𝑐 and 𝛽𝑐 for each county 𝑐 ∈ 𝐶 indicating

whether all or some of county 𝑐 is selected in a district, respectively. The difference between these

variables, 𝛾𝑐 = 𝛽𝑐−𝛼𝑐, indicates whether the district contains only part of county 𝑐. For each county

𝑐 ∈𝐶, denote by 𝑉𝑐 as the subset of 𝑉 that lies within 𝑐. This leads to the logical constraints:

𝛼𝑐 ≤ 𝑥𝑖 ≤ 𝛽𝑐 ∀𝑖 ∈𝑉𝑐, ∀𝑐 ∈𝐶 (4a)

𝛾𝑐 = 𝛽𝑐 −𝛼𝑐 ∀𝑐 ∈𝐶 (4b)∑︁
𝑐∈𝐶

𝛾𝑐 ≤ 1 (4c)

𝛼𝑐, 𝛽𝑐, 𝛾𝑐 ∈ {0,1} ∀𝑐 ∈𝐶. (4d)

If we solve the single district MISOCP model (1) with the majority-Black constraint (3) and county

preservation constraints (4), we obtain the district in Figure 3a with Polsby-Popper score 0.3908.

(a) (b) (c)

Figure 3 (a) majority-Black district with optimum Polsby-Popper score; (b) BVAP proportion by precinct; (c) 18 Black Belt

counties

Of course, the issue at hand in Milligan was whether Alabama was required by the VRA to draw

not one, but two majority-Black districts. With the MISOCP machinery described thus far, how

might we do this? First, recognize that Alabama’s Black population lies primarily in the central and
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southern portions of the state, specifically in the state’s largely rural Black Belt (known for its rich,

black soil that was farmed by Black slaves for many years) and in the cities of Birmingham (near the

center) and Mobile (near the southwest corner). To illustrate, Figure 3b shows the Black proportion

of each precinct, BVAP𝑖/VAP𝑖 for 𝑖 ∈ 𝑉 , and Figure 3c shows the 18 counties that are considered

part of the Black Belt (several others sometimes join). So, we suppose that if two majority-Black

districts could be drawn then they might be adjacent to each other.

With this in mind, we may seek a majority-Black “double district”, i.e., with twice the requisite

population, under the hypothesis that it could subsequently be divided into two majority-Black

districts. Intuitively, this—or something close—should be possible by discrete versions of the

pancake theorem, see DeFord et al. (2023). Given that we seek two districts, we may allow for more

county splitting, permitting, say, two partial counties in constraint (4c) instead of one. When we

solve this MISOCP, we indeed obtain a double district, see Figure 4a. However, its complement is

disconnected, and we cannot draw from it five other contiguous, population-balanced districts. In

a second attempt, we require that both the double district and its complement be contiguous. To

ensure the complement’s contiguity, we apply the same 𝑖, 𝑗-separator constraints as before (2), but

over the “complement” variables 𝑥𝑖 = 1− 𝑥𝑖. We then obtain the double district in Figure 4b. This

double district is somewhat similar to the two majority-Black districts that were prepared by the

Milligan expert witness Moon Duchin in her Plan D, see Figure 4c. However, Duchin’s districts

also include the Black Belt counties of Barbour and Russell, better preserving this community of

interest. Later, we will propose MISOCP techniques that can be used to extend Gingles districts

and double districts into full districting plans.

3.2. MISOCP for a Districting Plan

Now, we seek districting plans that are optimally compact with respect to the Polsby-Popper score.

That is, instead of drawing a single compact district within a state, we seek to partition the state into

𝑘 compact districts. In the following, we seek to optimize the average: (1) inverse Polsby-Popper

score; (2) Polsby-Popper score; and (3) Schwartzberg score.

3.2.1. Inverse Polsby-Popper Score. We find that the inverse Polsby-Popper score is mathe-

matically more convenient than the Polsby-Popper and Schwartzberg scores, so we first propose an

MISOCP for it. The variable definitions are similar to before, but with an additional index 𝑗 for

the district number. The binary variable 𝑥𝑖 𝑗 equals one when geographic unit 𝑖 ∈ 𝑉 is assigned to

district 𝑗 ∈ [𝑘] = {1,2, . . . , 𝑘}. The binary variable 𝑦
𝑗
𝑒 equals one when edge 𝑒 ={𝑢, 𝑣} ∈ 𝐸 , with
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(a) (b) (c)

Figure 4 (a) majority-Black double district (1st attempt); (b) majority-Black double district (2nd attempt); (c) Duchin’s Plan D

𝑢 < 𝑣, is cut because geographic unit 𝑢 ∈ 𝑉 is assigned to district 𝑗 but geographic unit 𝑣 ∈ 𝑉 is

not. The continuous variables 𝑃 𝑗 , 𝐴 𝑗 , and 𝑧 𝑗 capture the perimeter, area, and inverse Polsby-Popper

score of district 𝑗 , respectively.
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Our MISOCP to minimize the average inverse Polsby-Popper score is:

min
1
𝑘

𝑘∑︁
𝑗=1

𝑧 𝑗 (5a)

s.t. 𝑃2
𝑗 ≤ 4𝜋𝐴 𝑗 𝑧 𝑗 ∀ 𝑗 ∈ [𝑘] (5b)

𝑃 𝑗 =
∑︁
𝑒∈𝐸

𝑏𝑒𝑦
𝑗
𝑒 +

∑︁
𝑖∈𝑉

𝑏𝑖𝑥𝑖 𝑗 ∀ 𝑗 ∈ [𝑘] (5c)

𝐴 𝑗 =
∑︁
𝑖∈𝑉

𝑎𝑖𝑥𝑖 𝑗 ∀ 𝑗 ∈ [𝑘] (5d)

𝑥𝑢 𝑗 − 𝑥𝑣 𝑗 ≤ 𝑦
𝑗
𝑒 ∀𝑒 = 𝑢𝑣 ∈ 𝐸, ∀ 𝑗 ∈ [𝑘] (5e)

𝐿 ≤
∑︁
𝑖∈𝑉

𝑝𝑖𝑥𝑖 𝑗 ≤𝑈 ∀ 𝑗 ∈ [𝑘] (5f)

{𝑖 ∈𝑉 | 𝑥𝑖 𝑗 = 1} connected ∀ 𝑗 ∈ [𝑘] (5g)
𝑘∑︁
𝑗=1

𝑥𝑖 𝑗 = 1 ∀𝑖 ∈𝑉 (5h)

𝑥𝑖 𝑗 ∈ {0,1} ∀𝑖 ∈𝑉, ∀ 𝑗 ∈ [𝑘] (5i)

𝑦
𝑗
𝑒 ∈ {0,1} ∀𝑒 ∈ 𝐸, ∀ 𝑗 ∈ [𝑘] . (5j)

The objective (5a) minimizes the average inverse Polsby-Popper score. The constraints of model (5)

are analogous to those of model (1) but are written for 𝑘 districts instead of one. Another change

is that the assignment constraints (5h) require each geographic unit 𝑖 ∈ 𝑉 to be assigned to one

district. As written, this model suffers from symmetry, but this can be ameliorated with the extended

formulation for partitioning orbitopes of Faenza and Kaibel (2009), cf. Validi and Buchanan (2022).

3.2.2. Polsby-Popper Score. To maximize the average Polsby-Popper score, we want to

max
1
𝑘

𝑘∑︁
𝑗=1

1
𝑧 𝑗

subject to the same constraints from model (5). This is a mixed-integer nonlinear programming

(MINLP) problem that does not seem to admit a direct reformulation as a MISOCP. Its continuous

relaxation is nonconvex as it requires the maximization of a (separable) convex function. It could
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be solved using a spatial branch-and-bound algorithm (Smith and Pantelides 1999) by branching

on the continuous variables 𝑧 𝑗 . However, we propose a different approximate approach that avoids

spatial branching through a binary expansion of the 1/𝑧 𝑗 terms, similar to Temiz et al. (2010).

Specifically, express the Polsby-Popper score 1/𝑧 𝑗 using binary variables 𝑏ℎ 𝑗 as follows, where

the user can set the desired precision through the parameter 𝑡. We choose 𝑡 = 20, meaning that the

binary expansion of the Polsby-Popper score will be off by less than one part in a million.

𝑡∑︁
ℎ=1

2−ℎ𝑏ℎ 𝑗 =
1
𝑧 𝑗
.

By the maximization objective, it suffices to impose this equation as a less-than-or-equal inequality.

Then, after multiplying both sides by 𝑧 𝑗 , we obtain

𝑡∑︁
ℎ=1

2−ℎ𝑏ℎ 𝑗 𝑧 𝑗 ≤ 1.

Next, we introduce new variables 𝑤ℎ 𝑗 to replace the terms 𝑏ℎ 𝑗 𝑧 𝑗 . We impose the equation 𝑤ℎ 𝑗 =

𝑏ℎ 𝑗 𝑧 𝑗 with a suitable big-𝑀 using the following constraints:

𝑧 𝑗 +𝑀 (𝑏ℎ 𝑗 − 1) ≤ 𝑤ℎ 𝑗 ≤ 𝑀𝑏ℎ 𝑗

0 ≤ 𝑤ℎ 𝑗 ≤ 𝑧 𝑗 .

The left inequalities ensure that 𝑏ℎ 𝑗 𝑧 𝑗 ≤ 𝑤ℎ 𝑗 , while the right inequalities ensure that 𝑤ℎ 𝑗 ≤ 𝑏ℎ 𝑗 𝑧 𝑗 .

For them to be valid, it is required that each district have a Polsby-Popper score of at least 1/𝑀 . In

our experiments, we use 𝑀 = 16.
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Finally, our MISOCP to maximize the average Polsby-Popper score is:

max
1
𝑘

𝑘∑︁
𝑗=1

𝑡∑︁
ℎ=1

2−ℎ𝑏ℎ 𝑗 (6a)

s.t.
𝑡∑︁

ℎ=1
2−ℎ𝑤ℎ 𝑗 ≤ 1 ∀ 𝑗 ∈ [𝑘] (6b)

𝑧 𝑗 +𝑀 (𝑏ℎ 𝑗 − 1) ≤ 𝑤ℎ 𝑗 ≤ 𝑀𝑏ℎ 𝑗 ∀ℎ ∈ [𝑡], ∀ 𝑗 ∈ [𝑘] (6c)

0 ≤ 𝑤ℎ 𝑗 ≤ 𝑧 𝑗 ∀ℎ ∈ [𝑡], ∀ 𝑗 ∈ [𝑘] (6d)

𝑏ℎ 𝑗 ∈ {0,1} ∀ℎ ∈ [𝑡], ∀ 𝑗 ∈ [𝑘] (6e)

(𝑥, 𝑦, 𝑧) satisfies (5b)− (5j). (6f)

3.2.3. Schwartzberg Score. To minimize the average Schwartzberg score, we would like to

min
1
𝑘

𝑘∑︁
𝑗=1

√
𝑧 𝑗

subject to the same constraints from model (5). This objective is the minimization of a (separable)

concave function, which we reformulate for MISOCP solvers. We begin by introducing a continuous

variable 𝑠 𝑗 for the Schwartzberg score of each district 𝑗 ∈ [𝑘] and change the objective to

min
1
𝑘

𝑘∑︁
𝑗=1

𝑠 𝑗 .

By the minimization objective, it suffices to relate the Schwartzberg 𝑠 𝑗 variables to the inverse

Polsby-Popper variables 𝑧 𝑗 with inequalities of the form 𝑧 𝑗 ≤ 𝑠2
𝑗
. While these constraints are non-

convex, we can apply binary expansion on 𝑧 𝑗 and convert these inequalities into second-order cone

constraints. Similar to before, we assume that the inverse Polsby-Popper score 𝑧 𝑗 of each district is

less than 𝑀 and use 𝑡 for the user-chosen precision, say 𝑀 = 17 and 𝑡 = 20. Again, we introduce
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binary variables 𝑏ℎ 𝑗 for each ℎ = 1,2, . . . , 𝑡 and each 𝑗 ∈ [𝑘]. See that the expression
∑𝑡

ℎ=1 2−ℎ𝑏ℎ 𝑗
takes values between zero and (nearly) one, so we set the inverse Polsby-Popper score 𝑧 𝑗 to be

1+ (𝑀 − 1)
𝑡∑︁

ℎ=1
2−ℎ𝑏ℎ 𝑗 ,

which can take values between 1 and (nearly) 𝑀 .

Finally, our MISOCP to minimize the average Schwartzberg score is:

min
1
𝑘

𝑘∑︁
𝑗=1

𝑠 𝑗 (7a)

s.t. 1+ (𝑀 − 1)
𝑡∑︁

ℎ=1
2−ℎ𝑏2

ℎ 𝑗 ≤ 𝑠2
𝑗 ∀ 𝑗 ∈ [𝑘] (7b)

𝑧 𝑗 ≤ 1+ (𝑀 − 1)
𝑡∑︁

ℎ=1
2−ℎ𝑏ℎ 𝑗 ∀ 𝑗 ∈ [𝑘] (7c)

𝑏ℎ 𝑗 ∈ {0,1} ∀ℎ ∈ [𝑡], ∀ 𝑗 ∈ [𝑘] (7d)

(𝑥, 𝑦, 𝑧) satisfies (5b)− (5j). (7e)

The second-order cone constraints (7b) and linear constraints (7c) together impose that 𝑧 𝑗 ≤ 𝑠2
𝑗
.

Note that 𝑏ℎ 𝑗 = 𝑏2
ℎ 𝑗

as 𝑏ℎ 𝑗 is binary, so the left side of inequality (7b) will equal the right of (7c).

3.3. County-Level Experiments

We now apply the MISOCP models to county-level instances, which have a vertex for each county

and edges indicate county adjacencies. In these experiments, we seek to answer the following

questions. How quick are the models? Does the running time heavily depend on which objective

is used? We run tests on ten states that could draw county-level plans under a ±0.5% deviation:

Arkansas, Idaho, Iowa, Kansas, Maine, Mississippi, Montana, Nebraska, New Mexico, and West

Virginia. After the 2010 and 2020 censuses, only Iowa and West Virginia enacted county-level

plans; the others are considered out of curiosity and to supplement our testbed.

To impose contiguity, we use a strengthened form of the 𝑖, 𝑗-separator constraints called length-

𝑈 𝑖, 𝑗-separator constraints that gives speedups on county-level instances (Validi et al. 2022). To



Belotti, Buchanan, and Ezazipour: Political districting to optimize the Polsby-Popper score
22

separate them, we follow the procedure outlined by Validi et al. (2022), which first applies the

linear-time algorithm of Fischetti et al. (2017) to get a minimal 𝑖, 𝑗-separator and then pares it

down to a minimal length-𝑈 𝑖, 𝑗-separator. We inject a warm start solution obtained by solving the

model of Hess et al. (1965), which is very quick for county-level instances (Validi et al. 2022),

and then apply the local search procedure (Cleanup) that is developed later. We also safely fix

some variables to zero or one by exploiting the population balance constraints, see the 𝐿-fixing

and 𝑈-fixing procedures for labeling models due to Validi and Buchanan (2022). For symmetry

handling, we use the extended formulation for partitioning orbitopes due to Faenza and Kaibel

(2009), cf. Validi and Buchanan (2022). Results are given in Table 1.

Table 1 MISOCP results on county-level instances for the average: inverse Polsby-Popper score (PP−1), Polsby-Popper score

(PP), and Schwartzberg score (PP−1/2). We report the optimal objective value, or best lower and upper bounds [𝐿𝐵,𝑈𝐵], and

solve time in a 3600s time limit (TL).

PP−1 PP PP−1/2

state |𝐶 | 𝑘 obj time obj time obj time

AR 75 4 3.2251 16.46 [0.33,0.39] TL 1.7796 294.83

ID 44 2 3.5377 0.24 0.3211 0.65 1.8595 0.60

IA 99 4 2.0570 34.64 [0.50,0.62] TL 1.4280 1165.13

KS 105 4 2.3471 354.40 [0.42,0.67] TL [1.42,1.54] TL

ME 16 2 3.0941 0.09 0.3320 0.24 1.7531 0.12

MS 82 4 3.3692 34.32 0.3861 2033.26 1.8216 1913.51

MT 56 2 2.7285 0.28 0.3716 1.03 1.6510 0.42

NE 93 3 2.2460 2.05 0.4487 132.02 1.4972 21.07

NM 33 3 2.3593 0.17 0.4258 3.17 1.5351 0.47

WV 55 2 4.9502 0.24 0.2395 1.32 2.2165 1.99

First, we observe that MISOCPs solve most quickly with the inverse Polsby-Popper objective,

with most instances solving in under 35 seconds (and KS near six minutes). The average Polsby-

Popper and Schwartzberg objectives take longer, reaching the time limit on three instances and one

instance, respectively (all of which have 𝑘 ≥ 4 and |𝐶 | ≥ 75). The average Polsby-Popper objective

seems to be the most challenging, for example, taking more than one hour for AR, while the other

objectives solve in 16 seconds and 295 seconds. Given these computational advantages—and the
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practical advantages noted by Chikina et al. (2017) and Duchin (2018)—the procedures that we

propose next for drawing Gingles demonstration plans will use the inverse Polsby-Popper objective.

4. Extensions for Generating Gingles Demonstration Plans

We now turn to the problem of drawing compact plans with a large number of majority-minority

districts. Recall that this is the first legal hurdle faced by plaintiffs to bring a vote dilution claim

under Section 2 of the VRA.

We remark that each VRA case is unique, and there is no one-size-fits-all approach to drawing

Gingles demonstration plans. Differing state laws and other criteria (e.g., communities of interest,

like Alabama’s Black Belt) may influence their development. Likewise, recognizing that courts

are prone to adopt “least change” plans as remedies, VRA litigators may prefer demonstration

districts that keep most of the enacted districts intact or that only scramble districts within certain

portions of a state to permit “modular” remedies (see Moon Duchin’s export report in Georgia

State Conference of the NAACP v. Raffensperger for an example of this).

With these caveats in mind, we do not expect any computer-generated plan to be immediately

court-ready, but hope that our approach can still be of assistance, analogous to that provided by short

bursts (Cannon et al. 2023). Helpful in this regard is that our approach often outperforms enacted

maps by significant margins on traditional criteria, leaving plenty of “cushion” for practitioners.

Our approach has three phases. The first phase, Carve, repeatedly carves compact majority-

minority districts from the state. Each iteration of Carve solves a single-district MISOCP. The

second phase, Complete, districts the rest of the state. Each iteration of Complete solves a MIP to

break part of the state into nearly equal halves, and this idea is applied recursively until each part is

a single district. The third phase, Cleanup, makes the completed plan more compact while retaining

its other key properties. Each iteration of Cleanup solves a multi-district MISOCP.

4.1. Phase 1: Carve

In Carve, we use the single-district MISOCP model (1) to identify a compact majority-minority

district. The district is removed from the state, and the process is repeated.

Although the idea behind Carve is simple, intuitive, and not new (DeFord et al. 2018, McDonald

2019, McCartan and Imai 2023), we have found that naı̈ve implementations of it perform poorly,

both in terms of computational speed and in terms of solution quality. In an analogy, imagine taking

a cookie cutter to dough. After cutting out several cookies, we may be left with disconnected,
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non-compact dough scraps. Normally, we would ball up the dough, roll it out, and start again;

however, we do not get second chances like this in district carving. So, to improve the performance,

we make a few tweaks to the MISOCP model, as described below.

First, like DeFord et al. (2018) and McCartan and Imai (2023), we require that the district’s

complement be connected, in our case using 𝑖, 𝑗-separator inequalities written over the complement

variables 𝑥𝑖 = 1− 𝑥𝑖. Without this, we may be left with unworkable scraps after a few carves.

Second, we penalize minority VAPs that are in excess of the 50% threshold, since otherwise the

MISOCP sometimes unintentionally “packs” Black voters into districts with 80% to 95% BVAP,

thus diluting Black voting strength. Specifically, we introduce a nonnegative surplus variable 𝜁 in

the original BVAP constraint (3), writing:

∑︁
𝑖∈𝑉

BVAP𝑖𝑥𝑖 − 𝜁 =
1
2

∑︁
𝑖∈𝑉

VAP𝑖𝑥𝑖 . (8)

By default, we penalize the excess 𝜁 in our minimization objective with the term +0.001𝜁 . The

interpretation here is that one penalty point is charged for every 1,000 people beyond the 50%

threshold. The inverse Polsby-Popper score 𝑧 usually lies in the single-digit range for our instances,

and we have found the objective min 𝑧 + 0.001𝜁 to be a reasonable scalarization to balance the

competing objectives of compactness and avoiding excessive packing.

Third, we promote county preservation. Specifically, we first carve districts that are built entirely

from whole counties, then we seek districts with one partial county, and last we seek districts with

two partial adjacent counties. For maximum speed, we coarsen the original nodes into county

nodes where possible. Specifically, when carving districts built entirely from whole counties, we

work with the county-level graph, i.e., the graph in which each county’s nodes have been merged

into a single node. Next, when carving districts with one partial county, we coarsen all but one

county. In initial experiments, it seemed best to solve these problems sequentially, starting with the

least-populous counties and working our way towards the most-populous counties. Intuitively, this

is because the least-populous counties have fewer nodes in them, thus allowing us to first tackle

smaller subproblems, possibly carving a large number of nodes from the graph, before tackling

the larger subproblems. When seeking districts with two partial counties, we restrict ourselves to

adjacent counties. Because the county-level graphs are planar (or nearly so), this means that the

number of subproblems remains linear in the number of counties. Again, we solve them sequentially,
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starting with adjacent counties with the least combined population, in an effort to tackle smaller

subproblems and reduce the size of the graph before attempting the largest subproblems.

Fourth, we place a hard constraint on district compactness. Our default implementation requires

that any carved district have a Polsby-Popper score of at least 1/8 = 0.125. This is a reasonable

restriction for most states and avoids costly MISOCP solves, especially where a majority-Black

district could be drawn but would have too bizarre a shape.

For illustration purposes, we apply Carve to Louisiana’s House of Representatives, which has

105 single-member districts. We choose this instance because it was the primary test case in the

short bursts paper (Cannon et al. 2023). In the enacted plan, depicted in Figure 5a, there are 29

districts with a Black majority. Meanwhile, 31.25% of the voting age population is Black, and

33.13% of the total population is Black. So, somewhere between 33 and 35 districts would be

proportional. Why does this matter? Under the Supreme Court’s ruling in Johnson v. De Grandy

(1994), a vote dilution claim is likely to be unsuccessful if the number of minority-opportunity

districts is already proportional to the minority group’s statewide population. In this case, however,

the enacted plan does not achieve proportionality, a fact that was cited by the plaintiffs in Nairne

v. Landry, which challenged both the state senate and state house plans. This case was decided in

favor of the plaintiffs in February 2024, but the state has appealed the district court’s ruling.

Applying Carve to the precinct-level graph, we obtain 38 majority-Black districts, as depicted in

Figure 5b, with an average Polsby-Popper score of 0.3918. Compare this to the enacted plan’s 29

majority-Black districts, which have an average score of 0.2670. Later, we provide a more extensive

set of comparisons against enacted plans and the short bursts approach across several states on

precinct-level and block-group-level instances.

4.2. Phase 2: Complete

In Complete, we take the partial districting plan from Carve and complete it. Each iteration breaks

part of the state into contiguous, (nearly) equal halves, repeating until each part is a single district.

For this task, we use the single-district model (1) to identify one side of the bipartition, and its

complement is taken as the other half. For example, after carving 38 Gingles districts, we seek

105−38 = 67 additional districts for Louisiana’s House of Representatives. The first iteration breaks

the remainder into contiguous, nearly equal halves with populations suitable for 33 and 34 districts.

Next, each half is broken in half, with populations suitable for 16 or 17 districts, etc.
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(a) Enacted (b) Carve

(c) Complete (d) Cleanup

Figure 5 Louisiana House of Representatives: Enacted plan versus Carve, Complete, and Cleanup

While the idea behind Complete is simple and intuitive, we have found that naı̈ve implementations

of it perform poorly. Specifically, the biggest issue is that the bipartition problem can become

infeasible, often because of the contiguity or population balance constraints. One possible approach

to the population balance issue is to impose stricter population balance constraints for “larger”

subproblems and progressively relax them to the originally intended deviations for the “smallest”

subproblems. In this vein, Gurnee and Shmoys (2021) propose to use the tighter deviation tolerance

of ±𝜀′ := 𝜀/⌈log2(𝑘′)⌉, where 𝑘′ is the size (e.g., 𝑘′ = 33) and 𝜀 is the original deviation tolerance
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(e.g., 𝜀 = 0.05). We take a different approach to the population balance issue. Rather than impose

stricter “hard” constraints for larger subproblems, we penalize deviations from the ideal population

in the objective. This is similar to the approach we outlined for discouraging excessive BVAP

concentrations, see (8), except that we penalize both too-high and too-low populations. As before,

we use a penalty coefficient of 0.001, with the interpretation that one penalty point is charged for

every 1,000-person deviation from ideal. In our experience, this nudge does the trick.

We also observe that if the Polsby-Popper objective is used for the bipartition step, then the

smallest subproblems sometimes have graphs that are barely connected, also leading to infeasibility.

So, instead of the inverse Polsby-Popper objective (1a), we minimize the number of cut edges, i.e.,

that cross between the two sides. This is equivalent to maximizing the number of edges that are

preserved, thus saving them for subsequent subproblems.

Last, we promote county preservation. Using the same logical constraints as before (4), we

require that only one county can be split across the two sides. In the event that this constraint

makes the bipartition problem infeasible, we re-optimize without it. In some circumstances, the

bipartition problem continues to be infeasible. In this case, we forgo the bipartition step and take its

vertices as a multi-district. This allows the code to terminate gracefully, and the user can divide the

multi-district into individual districts manually using more granular geographic units like blocks.

Applying Complete, we obtain 67 additional districts for the Louisiana House of Representatives,

as depicted in Figure 5c. Across the entire plan, the average Polsby-Popper score is 0.3254, which

is already an improvement over the enacted plan’s average score of 0.2911, and its compactness

will get even better in the next phase.

4.3. Phase 3: Cleanup

The last phase, Cleanup, takes a districting plan and improves its compactness while retaining its

other key properties. At its core, Cleanup is a local search heuristic, with each iteration solving a

restricted form of the MISOCP model (5).

As with any local search heuristic, one must define a local search neighborhood. In the spirit of

Henzinger et al. (2020), our local search neighborhood permits nodes to relocate to nearby districts,

say, to any district that lies within ℎ hops. Meanwhile, nodes that are deep in a district’s interior are

forced to stay in their current district. To find an improved districting plan within this local search

neighborhood (with respect to compactness), we solve the associated MISOCP.
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Before proceeding, we recall some concepts from graph theory. Denote by dist(𝑖, 𝑗) the hop-based

distance between vertices 𝑖, 𝑗 ∈𝑉 . The (closed) ℎ-hop neighborhood of vertex 𝑖 ∈𝑉 is 𝑁ℎ [𝑖] = { 𝑗 ∈
𝑉 | dist(𝑖, 𝑗) ≤ ℎ}. The ℎ-hop neighborhood of vertex subset 𝑆 ⊆ 𝑉 is then 𝑁ℎ [𝑆] =∪𝑖∈𝑆𝑁ℎ [𝑖].

Relatedly, we can define the ℎ-hop neighborhood of a districting plan as follows.

DEFINITION 1 (ℎ-HOP NEIGHBORHOOD OF A PLAN). The districting plan (𝐷′
1, 𝐷

′
2, . . . , 𝐷

′
𝑘
)

belongs to the ℎ-hop neighborhood of districting plan (𝐷1, 𝐷2, . . . , 𝐷𝑘 ) if and only if 𝐷′
𝑗
⊆ 𝑁ℎ [𝐷 𝑗 ]

for all 𝑗 ∈ [𝑘].

Observe that the ℎ-hop neighborhood of a districting plan always contains itself (provided that

ℎ ≥ 0). The only plan in a districting plan’s 0-hop neighborhood is itself. The 1-hop neighborhood

permits each vertex to remain in its current district or to move to any of its neighbors’ districts.

The parameter ℎ allows the user to control the size of the local search neighborhood and the

difficulty of the associated MISOCPs. For small values of ℎ, like ℎ = 1 or ℎ = 2, the MISOCPs are

still relatively easy to solve and give a much larger search neighborhood than the usual flip and

swap neighborhoods that only relocate one or two nodes per iteration.

For maximum speed, we should exploit the fact that most vertices stay in the same district from

one iteration to the next. So, we do not create all |𝑉 |𝑘 assignment variables of the form 𝑥𝑖 𝑗 . Rather,

we create 𝑥𝑖 𝑗 only if 𝑖 has an ℎ-hop neighbor that presently belongs to district 𝑗 . Likewise, not

all cut edge variables 𝑦
𝑗
𝑒 need to be created. Even better, given that large portions of a map may

be frozen in the ℎ-hop neighborhood, we may merge their nodes into a single super-node, similar

to Henzinger et al. (2020). In this way, we need not worry about a memory crash when applying

Cleanup to our running example for the Louisiana House of Representatives, which would normally

require 3,540× 105 = 371,700 assignment variables and nearly two million cut edge variables. As

we will see later, this permits us to handle block-level instances with nearly 200,000 nodes.

By default, we limit local search to ten iterations, and limit each iteration to ten minutes. For

county preservation reasons, we also disallow a vertex 𝑖 from being assigned to district 𝑗 if no other

vertex its county was assigned to 𝑗 in the previous iteration. This ensures that no new county splits

will be introduced during local search (and, in fact, sometimes reduces splits).

Applying Cleanup to our running example, we improve the average Polsby-Popper score from

0.3254 to 0.3622. Before Cleanup, 42 counties (or Parishes) were split a total of 118 times. After

Cleanup, 39 counties are split a total of 113 times (zero precinct splits). This slightly outperforms

the enacted plan, which splits 41 counties a total of 116 times (three precinct splits).
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4.3.1. Complexity of Cleanup What is the computational complexity of Cleanup? That is,

given a districting plan, how difficult is it to find a more compact plan (say, with respect to the

inverse Polsby-Popper score) in its local search neighborhood? For typical neighborhoods, like flip

and swap, this is polynomial-time solvable by brute force. However, for the ℎ-hop neighborhood,

this is less clear as there may be exponentially many plans to sift through.

We show that this problem is NP-hard, even when there are only 𝑘 = 2 districts and the hop

parameter is set to ℎ = 1. This may seem unsurprising given that districting plans usually must

be contiguous and population-balanced, and these constraints are often thought to be the source

of the difficulty. However, we show that the problem remains hard even when these constraints

are relaxed, indicating that the objective is itself hard. This holds for the inverse Polsby-Popper

and Schwartzberg scores. We reduce from the “gift” subset sum problem, which we prove to be

NP-complete below. Recall that, in the subset sum problem, we are given a list of positive integers

𝑎1, 𝑎2, . . . , 𝑎𝑞, and the question is whether there is a subset of them whose sum equals half of the

total
∑𝑞

𝑖=1 𝑎𝑖. Let 𝑡𝑞 =
∑𝑞

𝑖=1 𝑎𝑖/2 be this target value. The gift subset sum problem is nearly the same,

except that the input also includes a subset whose sum is just one less than the target.

LEMMA 1. The gift subset sum problem is NP-complete.

Proof. We provide a reduction from the subset sum problem. Add two new integers to the list

𝑎𝑞+1 = 𝑎𝑞+2 = 𝑡𝑞 + 1, meaning that there are now 𝑛 = 𝑞 + 2 integers, and the new target value is

𝑡 = 2𝑡𝑞 + 1. Observe that the first 𝑞 integers 𝑎1, 𝑎2, . . . , 𝑎𝑞 sum to 2𝑡𝑞 = 𝑡 − 1, which is one less than

the new target 𝑡. It can also be seen that the original subset sum instance is a “yes” if and only if the

gift subset sum instance is a “yes”. □

For generality, we prove hardness for scores of the form 1
𝑘

∑𝑘
𝑗=1

(
𝑃2
𝑗

4𝜋𝐴 𝑗

)𝑟
. The average inverse

Polsby-Popper and Schwartzberg scores are special cases where 𝑟 = 1 and 𝑟 = 1
2 , respectively.

THEOREM 1. Let 𝑟 > 0. Given a districting plan, it is NP-hard to determine whether its ℎ-

hop neighborhood contains a more compact plan, i.e., with smaller 1
𝑘

∑𝑘
𝑗=1

(
𝑃2
𝑗

4𝜋𝐴 𝑗

)𝑟
. NP-hardness

persists when ℎ = 1, 𝑘 = 2, and the contiguity and population balance constraints are relaxed.

Proof. We provide a reduction from gift subset sum in which positive integers 𝑎1, 𝑎2, . . . , 𝑎𝑛

are given as input. Again, denote by 𝑡 =
∑𝑛

𝑖=1 𝑎𝑖/2 the target value. We may assume that 𝑛𝑡 > 1,

since otherwise the instance is trivial. We construct the districting instance depicted in Figure 6.

The rectangular geographic units down the center have widths 𝑎1, 𝑎2, . . . , 𝑎𝑛 and height one.

Thus, their areas are 𝑎1, 𝑎2, . . . , 𝑎𝑛, totaling 2𝑡. There is one unit of space between rectangles 𝑖 and
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left right

center-left center-right

𝑎1

𝑎2

𝑎3

...

𝑎𝑛

𝑡

𝑡 − 1

1

2𝑛

Figure 6 NP-hardness reduction from the “gift” subset sum problem.

𝑖 + 1, and one-half unit of space above rectangle 1 and below rectangle 𝑛. Thus, the total height of

the bounding rectangle is 2𝑛, and the total width is 2𝑡, giving the entire state an area of 𝐴 = 4𝑛𝑡.

There are four other geographic units: left, center-left, center-right, and right. There are jagged

(river) boundaries between left and center-left, and between center-right and right, so that these

jagged borders have a large length, 𝑀 = 8(𝑛 + 𝑡). These jagged boundaries lie sufficiently to the

left or right, say 𝑡 − 1 units from the center, so as not to touch the center rectangles. The leftmost

and rightmost borders are each 𝑡 units from the center. The left and right units have equal areas,

2𝑛, as do the center-left and center-right units, 2𝑛𝑡 − 2𝑛 − 𝑡. For local search purposes, define the

initial districts so that the first district contains the left unit, center-left unit, and center rectangles

from the gifted solution to the subset sum problem. The second district contains everything else.

CLAIM 1. The initial districts have an average score less than
(

4(𝑛+𝑡)2

𝜋𝑛𝑡

)𝑟
.

Proof of claim. The perimeter of each district is 𝑃 = 𝑃1 = 𝑃2 = 4(𝑛 + 𝑡), and the first district’s

area is two units less than the other’s area, 𝐴1 = 2𝑛𝑡 − 1 < 2𝑛𝑡 + 1 = 𝐴2, so the average score is

1
2

((
𝑃2

1
4𝜋𝐴1

)𝑟
+

(
𝑃2

2
4𝜋𝐴2

)𝑟 )
(9a)

=
𝑃2𝑟

2(4𝜋)𝑟

(
1
𝐴𝑟

1
+ 1
𝐴𝑟

2

)
(9b)

<
𝑃2𝑟

2(4𝜋)𝑟

(
2
𝐴𝑟

1

)
=

(
4(𝑛 + 𝑡)2

𝜋(2𝑛𝑡 − 1)

)𝑟
<

(
4(𝑛 + 𝑡)2

𝜋𝑛𝑡

)𝑟
, (9c)

where the last inequality holds by 𝑛𝑡 > 1. ■
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CLAIM 2. In an improved plan, the left and center-left units must be in the first district, and the

right and center-right units must be in the second district.

Proof of claim. As the left and right units lie within their districts’ interiors, the 1-hop neigh-
borhood requires them to remain in the first and second district, respectively. Because of the long
border between the left and center-left units, 𝑀 = 8(𝑛 + 𝑡), it would be undesirable for them to be
in different districts, as this would give 𝑃1 ≥ 𝑀 and 𝑃2 ≥ 𝑀 (and trivially 𝐴1 ≤ 4𝑛𝑡 and 𝐴2 ≤ 4𝑛𝑡),
yielding an average score of

1
2

((
𝑃2

1
4𝜋𝐴1

)𝑟
+

(
𝑃2

2
4𝜋𝐴2

)𝑟 )
≥

(
𝑀2

4𝜋(4𝑛𝑡)

)𝑟
=

(
4(𝑛 + 𝑡)2

𝜋𝑛𝑡

)𝑟
,

which is worse than the initial plan. Likewise, the right and center-right units must be together. ■

CLAIM 3. A plan in the 1-hop neighborhood of the initial plan is more compact if and only if it

divides the area of the center units equally across the districts.

Proof of claim. Observe that the 1-hop neighborhood permits the center units to belong to
either district. No matter how they are divided across the districts, contiguity will hold and the
perimeter of each district will again be 𝑃 = 4(𝑛 + 𝑡). So, the average score is again given by (9b),
where the areas 𝐴1 and 𝐴2 satisfy 𝐴1 + 𝐴2 = 𝐴 = 4𝑛𝑡. Removing the leading constant 𝑃2𝑟

2(4𝜋)𝑟 , we are
left with the internal expression

1
𝐴𝑟

1
+ 1
𝐴𝑟

2
=

1
𝐴𝑟

1
+ 1
(𝐴− 𝐴1)𝑟

,

which is strictly convex in the (integer) variable 𝐴1 (for 0 < 𝐴1 < 𝐴) and symmetric about the
unique minimizer 𝐴1 = 𝐴/2. So, the only improved solution would come with 𝐴1 = 𝐴/2, whose
solution would evenly divide the center rectangles’ areas across the two districts. ■

In conclusion, we have shown that there is a more compact plan within the 1-hop neighborhood
of the initial plan if and only if the gift subset sum instance is a “yes”. □

The problem outlined in Theorem 1 also belongs to NP when 𝑟 = 1, implying NP-completeness.
However, membership in NP is less clear for other values of 𝑟 , like 𝑟 = 1

2 , due to issues with
computing square roots, cf. the well-known square-root sum problem.



Belotti, Buchanan, and Ezazipour: Political districting to optimize the Polsby-Popper score
32

5. Experiments for Notable VRA Instances

In this section, we apply the proposed approach to notable VRA instances. Specifically, we consider

state legislative districts, i.e., state senate (“SS”) and state house (“SH”), from Louisiana (“LA”),

Mississippi (“MS”), Alabama (“AL”), and Georgia (“GA”). Each of these eight enacted maps was

challenged under Section 2 of the VRA in the 2020 redistricting cycle for minority vote dilu-

tion (Redensky and Leaverton 2023). Lawsuits brought by Black voters include: Nairne v. Landry

in Louisiana; Mississippi State Conference of the NAACP v. State Board of Election Commissioners

in Mississippi; Milligan v. Allen and Stone v. Allen in Alabama; and Alpha Phi Alpha Fraternity

Inc v. Raffensperger and Grant v. Raffensperger in Georgia.

As previously mentioned, each VRA case is unique, and we do not believe that any computer-

generated plan will be immediately court-ready. However, given that our approach often outperforms

enacted maps by significant margins on traditional criteria, our hope is that it can assist in the

drawing Gingles demonstration plans by giving a starting point with plenty of cushion, analogous

to how short bursts and other computational methods have provided assistance.

To demonstrate the potential of our approach, we compare it against short bursts (Cannon

et al. 2023), particularly its recent “Gingleator” implementation in the GerryChain software pack-

age (MGGG 2024c,a). We apply it both with default settings and with region-aware settings to

promote county preservation (MGGG 2024b). In initial testing, GerryChain had trouble finding

an initial districting plan, especially for state house instances, so we apply Complete to find one.

Another stumbling block is that precincts can be quite large, sometimes having more than half a state

house district’s population. This includes a 14,258-person precinct in Mississippi, a 28,753-person

precinct in Alabama, and a 45,590-person precinct in Georgia. For this reason, we build state house

districts from block groups, which also follows Cannon et al. (2023). Meanwhile, we build state

senate districts from precincts. We run short bursts for a total of 100,000 steps and a burst length

of 10, following Cannon et al. (2023). We also compare against the enacted 2022 state legislative

districts, as collected from the US Census Bureau (2022).
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Instance Number of Majority-Black Districts Average Polsby-Popper Score Total Number of County Splits

State/Type Proportional Enacted SB SB-RA CCC Enacted SB SB-RA CCC Enacted SB SB-RA CCC

LA/SS 13 11 12 11 13 0.1837 0.2306 0.2955 0.3863 77 95 46 36

LA/SH 35 29 35 33 39 0.2911 0.2664 0.2960 0.4007 116 173 123 115

MS/SS 20 15 25 21 22 0.2630 0.2215 0.3250 0.3377 64 131 53 46

MS/SH 46 42 51 50 53 0.2644 0.2739 0.3225 0.4137 181 206 134 118

AL/SS 10 8 9 9 9 0.2568 0.2165 0.3156 0.3620 35 88 36 28

AL/SH 29 28 30 30 31 0.2445 0.2507 0.2865 0.3857 115 191 125 105

GA/SS 18 16 20 19 19 0.2870 0.2009 0.2753 0.3530 60 157 70 47

GA/SH 59 54 56 53 57 0.2784 0.2458 0.2902 0.4204 209 388 218 180
Table 2 Comparison of 2022 enacted plans, short bursts (SB), region-aware short bursts (SB-RA), and Carve-Complete-Cleanup (CCC). Here, the district types are either

state senate (SS) or state house (SH).
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Table 2 reports results across four states and two district types. The reported criteria are the

number of majority-Black districts, the average Polsby-Popper score, and the total number of

county splits. We compare the performance of the 2022 enacted plan (“Enacted”), short bursts

(“SB”), region-aware short bursts (“SB-RA”) with a county surcharge of 0.5 (as 1.0 often caused

GerryChain to get stuck), and our proposed approach Carve-Complete-Cleanup (“CCC”). Recall

that the short bursts variants run for 100,000 steps, generating a total of 100,000 plans beyond

the initial plan. Which of them should we report scores for? We choose the one with the largest

number of majority-Black districts, breaking ties by largest average Polsby-Popper score. We also

report the number of majority-Black districts that would be proportional based on the state’s total

Black population, rounded to the nearest integer. On three instances (MS/SS, MS/SH, GA/SH), our

default implementation generates one multi-district that is subdivided into districts by hand.

First, we consider the number of majority-Black districts. We observe that all eight enacted

plans are sub-proportional. This comes as no surprise given that all were challenged in court. We

see that short bursts and region-aware short bursts usually find more majority-Black districts than

the enacted plans (excepting SB-RA for LA/SS and GA/SS), although not always to the level of

proportionality. Short bursts and region-aware short bursts find proportional plans for 5/8 and 4/8

of the instances, respectively, while our default implementation finds proportional plans for 6/8.

Next, we turn to district compactness, measured by the average Polsby-Popper score. We remark

that, although Gingles demonstration plans must be compact and reasonably configured, it is not a

requirement that they match or outperform the enacted plan on the usual metrics, but this is preferred

to be most compelling. We see that short bursts and region-aware short bursts outperform 3/8 and

7/8 of the enacted plans on compactness. Meanwhile, our default implementation outperforms all

eight enacted plans, often substantially (e.g., by double for LA/SS, 0.3863 vs. 0.1837).

Last, we turn to county preservation. We see that short bursts splits counties more times than

the enacted plans, sometimes by double or triple; see, for example, MS/SS, AL/SS, and GA/SS.

As expected, the region-aware implementation performs better on county preservation, although

still not matching 5/8 of the enacted plans. We suspect that the region surcharge can be tuned

somewhere between 0.5 and 1.0 to get better county preservation performance without getting

stuck or sacrificing majority-Black districts. Meanwhile, our default implementation outperforms

all enacted plans, often by substantial margins (e.g., by double for LA/SS, 36 vs. 77 total splits).

We reiterate that, for the state senate (SS) instances, all precincts are kept whole. Meanwhile,

on the state house (SH) instances, these proof-of-concept experiments use block groups, so many
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precincts end up being split. In our experience, our default implementation can be applied to the

precinct level for the SH instances as well (as we already saw for LA/SH in the running example),

although sometimes generating a few more multi-districts. These multi-districts could be subdivided

by hand. Alternatively, our approach (e.g., Complete) could subdivide these multi-districts by

handling them at a finer level of granularity (e.g., at the block level).

5.1. Cleanup for Alabama Congressional (Plan D)

We remark that one can pick and choose which phases of our approach to use. For example, one

could draft a map by hand (or with alternative computer methods such as GerryChain’s short

bursts implementation) and subsequently polish it using our MISOCP-based Cleanup procedure. To

illustrate, we apply Cleanup to Moon Duchin’s Plan D, which she drew for Gingles demonstration

purposes when challenging Alabama’s enacted congressional districts in the Supreme Court case

Allen v. Milligan (2023). We work with the block-level graph, which is quite large, having 185,976

vertices. Despite this, our implementation manages because not all variables of model (5) are

created, as most of them are fixed to one or zero in the ℎ-hop neighborhood (or are effectively

projected out of the model when the cores of the districts are merged into super-nodes). As before,

we maintain the total number of county splits by allowing a block 𝑖 ∈ 𝑉 to be assigned to district

𝑗 ∈ [𝑘] only if another block from its county was assigned to district 𝑗 . We require that the majority-

Black districts remain majority-Black and enforce a 1-person deviation. With 1-hop local search,

we improve the average Polsby-Popper score from 0.2520 to 0.2830, already outperforming the

“Livingston Plan” (score of 0.2817) that Alabama enacted in 2023 after their previous plan was

overturned. By increasing the size of the local search parameter ℎ, we can go further. With ℎ = 2,

the average Polsby-Popper score increases to 0.3003. With ℎ = 3, it increases to 0.3239. With ℎ = 4,

it increases to 0.3288. Figure 7 shows how the district lines smooth out as ℎ increases.

6. Conclusion and Future Work

Although the Polsby-Popper score is the most popular compactness score in the academic literature

and in expert testimony (Polsby and Popper 1991, Duchin 2018), it has largely been absent from the

operations research and mathematical programming literature, presumably because of its nonlinear

nature. We show how to capture the Polsby-Popper, inverse Polsby-Popper, and Schwartzberg

scores in mixed-integer second-order cone programs (MISOCPs), which optimization solvers began

supporting only recently. We demonstrate that the MISOCPs can be used to draw optimally compact
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(a) 1-hop (b) 2-hop (c) 3-hop (d) 4-hop

Figure 7 Application of Cleanup to Duchin’s Plan D.

plans using counties and optimally compact districts using precincts. With additional constraints,

they can also identify optimally compact majority-minority districts.

We then turn to the task of drawing compact districting plans with large numbers of majority-

minority districts for Gingles demonstration purposes. We show that, with a few intuitive tweaks,

the MISOCP can be applied repeatedly to find a large number of majority-Black districts, in a

procedure that we call Carve. These partial districting plans are extended to full districting plans in

the MIP-based procedure called Complete. These full plans are made significantly more compact

using a MISOCP-based local search procedure that we call Cleanup. Although this Cleanup task

is proven to be NP-hard, we find that commercial optimization solvers can successfully optimize

over the proposed local search neighborhood, even for instances with nearly two hundred thousand

census blocks such as Alabama. Ultimately, we arrive at a powerful computer tool for drafting

Gingles demonstration plans. On several notable VRA instances, it performs as well or better than

enacted plans and state-of-the-art computer tools (like GerryChain’s Gingleator) on criteria such

as the number of majority-Black districts, Polsby-Popper compactness, and county preservation.

These newfound abilities may find applications in Section 2 litigation when using the VRA to

overturn political districting plans that dilute the voting power of minority groups. We envision

several. First, the computer-generated plans could serve as visual guides that mapmakers look

to for inspiration. Second, mapmakers could apply the Cleanup procedure to their own hand-

drawn or computer-generated maps (that were generated, say, using GerryChain) to improve their
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compactness scores. Third, in the event that the proposed approach generates more majority-Black

districts than a proportionality baseline, the user could select which ones they think are most

reasonably configured, drop the rest, and apply Complete and Cleanup to finish and polish the plan.

Fourth, the approach need not be applied to the entire state; the user could use it to scramble and

redraw districts in select portions of a state to promote least-change or modular remedies.

In future work, it would be interesting (and legally impactful) to use optimization to understand

the fundamental tradeoffs between district compactness (e.g., Polsby-Popper score) and other

criteria (e.g., population deviation, minority representation, political subdivision preservation,

partisan fairness). We suspect this to be a difficult task, requiring integer programming methods

beyond those developed in this paper. In recent literature, e.g., Schutzman (2020), Becker and

Solomon (2022), Swamy et al. (2023), McCartan (2023), researchers have proposed heuristic and

optimization-inspired methods to estimate the associated Pareto frontiers, but without guarantees.

Another opportunity for future work is to extend the approach to assist in the drawing of VRA-

compliant plans, allowing minority-opportunity districts and not necessarily majority-minority

districts (Grofman et al. 2001, Lublin et al. 2020, Becker et al. 2021).

Code and Data Disclosure

The code and numerical results for this paper can be found at:

https://github.com/AustinLBuchanan/Polsby_Popper_optimization

The data will be shared upon request, after agreeing to terms set by Redistricting Data Hub at:

https://redistrictingdatahub.org/terms-and-conditions/

Notes
1When calculating BVAP𝑖, we use the “any part” racial classification, which was also used in

Moon Duchin’s expert report for Allen v. Milligan (2023) (Duchin 2021). For example, someone

who checked both the “Black or African American” and “White” boxes on their Census form would

be included in the BVAP𝑖 tally. Guidance from the US Department of Justice also suggests this

practice when a respondent selects a minority race and a white race, but when someone selects

multiple minority group boxes the DOJ will “allocate these responses on an iterative basis to each

of the component single-race categories for analysis” (U.S. Department of Justice 2021).
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