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Abstract

Two nodes of a wireless network may not be able to communicate with each other directly
perhaps due to obstacles or insufficient signal strength. This necessitates the use of intermediate
nodes to relay information. Often, one designates a (preferably small) subset of them to relay
these messages (i.e., to serve as a virtual backbone for the wireless network) which can be seen
as a connected dominating set (CDS) of the associated graph. Ideally, these communication
paths should be short, leading to the notion of a latency-constrained CDS. In this paper, we
point out several shortcomings of a previously studied formalization of a latency-constrained
CDS and propose an alternative one. We introduce an integer programming formulation for the
problem that has a variable for each node and imposes the latency constraints via an exponential
number of cut-like inequalities. Two nice properties of this formulation are that: (1) it applies
when distances are hop-based and also when they are weighted; and (2) it easily generalizes to
ensure fault tolerance. We provide a branch-and-cut implementation of this formulation and
compare it with a new polynomial-size formulation. Computational experiments demonstrate
the superiority of the cut-like formulation. We also study related questions from computational
complexity such as approximation hardness and answer an open problem regarding the fault
diameter of graphs.

Keywords: connected dominating set; strongly connected dominating set; latency; delay; hop
constraint; k-club; length-bounded cut; wireless networks; fault-tolerant; integer programming;

1 Introduction

Two nodes of a wireless network may not be able to communicate with each other directly perhaps
due to obstacles or insufficient signal strength. This necessitates the use of intermediate nodes to
relay information. Often, one designates a small subset of them to relay messages (i.e., to serve as
a virtual backbone for the wireless network) which amounts to a connected dominating set of the
associated graph, defined below.

Definition 1 (CDS). A subset D ⊆ V of vertices is a connected dominating set (CDS) for an
undirected graph G = (V,E) if:

1. D is dominating, i.e., every vertex from V \D neighbors a vertex of D; and

2. D is connected, i.e., the subgraph G[D] induced by D is connected.
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If the graph G is not complete1, a CDS can equivalently be defined as a subset D ⊆ V of vertices
such that, for every vertex pair {a, b} ∈

(
V
2

)
, there exists a path connecting a and b whose interior

vertices belong to D.
A CDS ensures that the nodes of the network can communicate with each other. It provides

little guarantee on how long it will take for a message to be received once it has been sent. This
has led some researchers to impose additional constraints on the CDS D ⊆ V , namely that the
subgraph induced by the dominating set D has diameter at most s, i.e., is a dominating s-club (Li
et al., 2007; Zhang et al., 2008; Buchanan et al., 2014). This ensures that messages will be received
in s + 2 hops: one hop to reach the CDS, at most s hops within the CDS, and one hop to reach
the destination.

Definition 2 (Dominating s-club). A subset D ⊆ V of vertices is a dominating s-club for an
undirected graph G = (V,E) if:

1. D is dominating, i.e., every vertex from V \D neighbors a vertex of D; and

2. D is an s-club, i.e., the subgraph G[D] induced by D has diameter at most s.

We argue that this formalization of the problem is less than ideal. First, and most importantly,
a dominating s-club does not quite capture the intent of the hop constraints, as we will illustrate.
Suppose that we want a CDS that facilitates 4-hop communication in the graph in Figure 1. This
can be ensured by the dominating 2-club given in Figure 1(a). Indeed, a message sent from node
5 to node 8 through this virtual backbone must follow the path 5-4-3-6-8, which takes four hops.
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Figure 1: (a) dominating 2-club; (b) latency-2 CDS; (c) latency-3 CDS.

If 3-hop communication were required, one might search for a dominating 1-club, but none exist
in this graph. This may lead us to believe that a CDS that facilitates 3-hop communication does
not exist, but this belief would be false. Indeed, in Figure 1(b) we provide a CDS which needs at
most two hops to transmit information, so we could call it a latency-2 CDS. Further, Figure 1(c)
gives a latency-3 CDS which is also a minimum CDS! Note that a message can be passed directly
from node 8 to node 9 in the wireless network since they are adjacent; it does not have to be relayed
through the CDS nodes.

Another limitation of previous works is that they make the simplifying assumption that distances
are measured by the number of hops, see Li et al. (2007); Zhang et al. (2008); Buchanan et al. (2014)
and Chapter 7 of Du and Wan (2013). However, this may ultimately provide a poor approximation
to the actual end-to-end delay when the delays at the nodes differ. For example, a particular

1The complete graph is the only exception. In this case, no virtual backbone is needed and yet Definition 1
would disallow the empty set. For this reason, the complete graph is treated “with generous disregard” in the virtual
backbone literature.
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node may play a central role in the CDS, needing to relay a large number of messages. This
may cause messages to have to wait to be transmitted, and these queueing delays may be more
realistically captured for our purposes via node-weighted delays as opposed to hop-based delays.
For more information about this and other delays in wireless networks, consult Xie and Haenggi
(2009) and Zhong et al. (2017).

With these shortcomings in mind, we propose a new formalization of a low-latency virtual
backbone, which we call a latency-s CDS. For purposes of generality, it is defined in terms of a
directed and—without loss of generality—edge-weighted graph. By allowing for directed edges, we
can model non-uniform transmission ranges. For example, consider the case where a node i has a
large transmission range and is far away from a node j that has a small transmission range. In this
scenario, the edge (i, j) should exist, but not the edge (j, i). Note that, as we make the transition
to directed graphs, we are no longer referring to a “CDS” in the sense of Definition 1, but rather
in terms of a strongly connected dominating set in the sense of Li et al. (2009). This is defined as a
subset D of vertices such that: (i) D induces a strongly connected subgraph; and (ii) every vertex
from V \D has both an in-neighbor and an out-neighbor in D.

Definition 3 (latency-s CDS). A vertex subset D ⊆ V is a latency-s CDS for a directed graph
G = (V,E) under edge weights w : E → R+ if, for every vertex pair (a, b) ∈ V × V , there is a path
from a to b of length at most s whose interior vertices belong to D.

Observe that the graph G in Definition 3 is edge-weighted but not vertex-weighted. This is
without loss of generality, as the following will illustrate. Consider the 3-vertex, undirected path
graph 1-2-3 representing a wireless network. Sending a message from node 1 to node 3 would incur
delays at nodes 1 and 2 (since the delay is based on the transmitting node), as well as delays on
edges {1, 2} and {2, 3}, for an end-to-end delay that might be denoted d1 + d2 + d{1,2} + d{2,3}.
Instead, we can replace each undirected edge {i, j} by its directed counterparts (i, j) and (j, i) and
let the delay of each directed edge d(i,j) be the delay of its undirected counterpart d{i,j} plus the
delay of its tail node di. In this way, it is sufficient to consider a directed graph with only edge
weights.

Definition 3 overcomes the aforementioned issues with the previous formalization based on
dominating s-clubs. As an added bonus, it has superior computational properties. Indeed, checking
whether a graph admits a latency-s CDS is as simple as checking whether the graph’s diameter
is at most s. In contrast, the problem of checking whether there exists any dominating s-club is
NP-complete; specifically, this is true under hop-based distances for the two most restrictive (but
nontrivial) cases where s = diam(G) − 2 (Schaudt, 2013) and s = diam(G) − 1 (Buchanan et al.,
2014), where diam denotes the graph’s diameter.

The associated optimization problem is as follows.

Problem: The minimum latency-s CDS problem.
Input: A directed graph G = (V,E), a weight we ≥ 0 for each edge e ∈ E, and a number s.
Output: (if any exist) A smallest subset D ⊆ V of vertices that is a latency-s CDS.

In this paper, we propose an integer programming (IP) formulation for this problem that uses an
exponential number of cut-like inequalities. As we will see, a relatively simple implementation of it
significantly outperforms a polynomial-size formulation that we introduce. This second formulation
has O(sn2) variables and O(snm) constraints and applies when the distances are hop-based, where
n and m denote the number of vertices and edges, respectively. In contrast, the cut-like formulation
applies when there are weighted delays.
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1.1 Previous Work

The minimum CDS problem is a well-studied NP-hard problem (Garey and Johnson, 1979) in which
the task is to find a CDS of minimum cardinality. For example, Figure 2(a) provides a CDS and
Figure 2(b) provides a minimum CDS. The reader is encouraged to consult the book by Du and
Wan (2013) for motivating applications, approximation algorithms, and hardness results. There
are a number of IP formulations and implementations for the minimum CDS problem and for
the equivalent maximum-leaf spanning tree problem (Lucena et al., 2010; Simonetti et al., 2011;
Morgan and Grout, 2008; Fan and Watson, 2012; Fujie, 2004; Gendron et al., 2014; Buchanan
et al., 2015). See also the literature on the regenerator location problem (Chen et al., 2010, 2015;
Li and Aneja, 2017). To our knowledge, the state-of-the-art2 IP formulation and implementation
are due to Fujie (2004) and Buchanan et al. (2015), respectively, although several of the previously
mentioned approaches work well. As far as we know, the only previous work to propose an IP
formulation for a latency-constrained variant of the CDS problem is by Buchanan et al. (2014);
however, it is for dominating s-clubs.
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Figure 2: (a) CDS; (b) minimum CDS; (c) 2-connected 2-dominating set.

Assuming the input graph is not complete, the minimum CDS problem can be formulated as
an IP as follows, where xi is a binary variable representing the decision to include vertex i in the
CDS. A vertex cut is a subset C ⊂ V of vertices such that G− C := G[V \ C] is disconnected and
nontrivial (i.e., has at least two nodes).

min
∑
i∈V

xi (1)∑
i∈C

xi ≥ 1, ∀ vertex cut C ⊂ V (2)

xi ∈ {0, 1}, ∀i ∈ V. (3)

This particularly elegant formulation is essentially due to Fujie (2004), and its linear programming
relaxation can be solved in polynomial time despite having exponentially many constraints, as
the separation problem for the vertex cut constraints (2) can be solved in polynomial time. The
implementation of Buchanan et al. (2015) used this formulation to solve 42 of 47 standard test

2An Associate Editor referred us to a later paper by Li and Aneja (2017) that proposes to use the same Fujie-based
formulation but with some additional cuts. Li and Aneja claim that their two implementations, named B&C1 and
B&C2, “significantly outperformed the available exact algorithm[s] in the literature,” but neglect to compare results
with Buchanan et al. (2015). This is problematic as Li and Aneja fail to solve 2 of these 47 instances within a time
limit of 3600 seconds. Namely, Li and Aneja do not solve the instances v200 d10 and IEEE-300-Bus within the time
limit, but Buchanan et al. solve these instances in 496.43 and 52.88 seconds, respectively.
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instances each in under 10 seconds (and never taking longer than 500 seconds), whereas no earlier
approach solved 42 instances each in a 1-hour time limit. In their implementation, Buchanan et al.
(2015) add violated vertex cut inequalities on-the-fly, cutting off infeasible integer points. Our
proposed formulation in this paper, which generalizes Fujie’s formulation, is implemented in the
same manner.

One drawback of a CDS is that it can be vulnerable to node or arc failures. For example,
consider the minimum CDS from Figure 2(b). If node 3 fails, this renders the virtual backbone
inoperative as it no longer can relay information (say, from node 5 to node 8).

This motivates the notion of a fault-tolerant CDS—one that remains a CDS when fewer than k
nodes fail. This has been called a k-connected k-dominating set (k-k-CDS) as it can equivalently
be defined as a subset S ⊆ V of vertices such that G[S] is k-vertex-connected and every vertex
of V \ S has k neighbors in S. Figure 2(c) gives a 2-2-CDS, which remains a CDS if one vertex
fails. The associated optimization problem, the minimum k-k-CDS problem, admits the following
formulation (Buchanan et al., 2015; Ahn and Park, 2015).

min
∑
i∈V

xi (4)∑
i∈C

xi ≥ k, ∀ vertex cut C ⊂ V (5)

xi ∈ {0, 1}, ∀i ∈ V. (6)

The formulations that we propose in this paper generalize this k-k-CDS formulation as well as
Fujie’s CDS formulation.

1.2 Notation and Terminology

From now on, unless stated otherwise, G = (V,E) will be a directed graph, with vertex set V
and edge set E ⊂ V × V , that has no loops and no parallel edges. By “no parallel edges”, we
mean that there is at most one directed edge from a vertex i to a vertex j, and so we can refer
to it by the notation (i, j). Here, i is called the tail and j is the head. Frequently, we bidirect an
undirected edge, which we define to be the operation in which an undirected edge {i, j} is replaced
by its directed counterparts (i, j) and (j, i). When the edges of G are reciprocated, i.e., if (i, j) ∈ E
implies (j, i) ∈ E, then we say that G is bidirected—not to be confused with the bidirected graphs
of Edmonds and Johnson (1970), see also Schrijver (2003).

For each edge e ∈ E of G, there is an associated nonnegative weight we representing the delay. In
the hop-based case, each weight is one. The distance from vertex a to vertex b in graph G, denoted
distG(a, b), is the length of a shortest path from a to b in G, edge-weighted by w. Convention
states that if there is no path from a to b in G, then distG(a, b) =∞. The diameter of G, denoted
diam(G), is the maximum of these pair-wise distances, i.e., diam(G) := max{distG(a, b) | a, b ∈ V }.

The out-neighborhood and in-neighborhood of a vertex v ∈ V in G are denoted N+
G (v) := {w ∈

V | (v, w) ∈ E} and N−(v) := {u ∈ V | (u, v) ∈ E}, respectively. For a vertex subset S, δ+G(S)
denotes the subset of edges whose tail belongs to S and whose head does not. Similarly, δ−G(S)
denotes the subset of edges whose head belongs to S but whose tail does not. For a singleton
S = {v}, let δ+G(v) := δ+G({v}) and δ−G(v) := δ−G({v}). When the graph G in question is clear,
the subscripts G in N+

G (·), N−G (·), δ+G(·), and δ−G(·) are omitted. The subset of edges having both
endpoints in S ⊆ V is denoted E(S) := {(i, j) ∈ E | i, j ∈ S}.
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1.3 Our Contributions

In Section 2, we examine the complexity of latency-s CDS’s. Specifically, we answer questions like:
How quickly can one verify that a given subset of vertices is a latency-s CDS? And, how hard is
the minimum latency-s CDS problem?

In Section 3, we propose IP formulations for the minimum latency-s CDS problem. The first
formulation, which we call CUT, has n binary variables and an exponential number of cut-like
constraints. We then generalize this formulation so that it models the fault-tolerant variant in
which one seeks a latency-s CDS that maintains feasibility after a small number of vertex failures.
Then, we give a second IP formulation, which we call POLY, that has O(sn2) variables and O(snm)
constraints. It serves as a baseline for computational comparisons.

In Section 4, we examine the complexity of the separation problem associated with formulation
CUT. Specifically, we show that, under hop-based distances, it is polynomial-time solvable for
s ∈ {2, 3, 4} and NP-hard when s ≥ 5. En route to proving this, we answer an open question of Xu
et al. (2005), by showing that it is indeed NP-hard to compute a graph’s fault diameter.

In Section 5, we perform computational experiments. Our results demonstrate that a branch-
and-cut implementation of formulation CUT significantly outperforms the polynomial-size formula-
tion POLY. Notably, CUT makes easy work of a real-life instance with 300 nodes, while formulation
POLY struggles to solve instances with 50 nodes in an hour.

In Section 6, we conclude and discuss directions for future research.

2 The Complexity of Latency-s CDS

In this section, we examine the complexity of latency-s CDS’s. First, we pinpoint the complexity of
verifying feasible solutions, showing essentially that a quadratic running time is unavoidable under
a plausible complexity assumption. Then, we establish the inapproximability of the minimum
latency-s CDS problem.

2.1 The Complexity of Verifying Feasible Solutions

To verify that a given subset D ⊆ V of vertices is a latency-s CDS, we can compute, for each vertex
v ∈ V , the shortest paths from v to all other nodes t ∈ V \{v} and check that these paths are short
enough. However, we are not interested in just any paths from v to t; these paths must not cross
vertices from V \D. In our proposed approach, we solve an instance of the single source shortest

path problem (SSSP) in the subgraph
−→
GD

v = (V,
−→
ED

v ), which has edge set

−→
ED

v := E(D) ∪ δ+(D) ∪
(
δ+(v) ∩ δ−(D)

)
. (7)

Here, we preserve the edges E(D) that have both endpoints in D, those edges δ+(D) that point

out of D, and those edges δ+(v) ∩ δ−(D) whose tail is v and whose head is in D. This set
−→
ED

v

includes all edges that might be used in a suitable path from v to another node. Of course, we

need not create the graph
−→
GD

v in the implementation, as nearly any shortest path algorithm can

be reconfigured to work implicitly on
−→
GD

v when given G, D, and v.

IsLatencyConstrainedCDS(G, D, s):

1. for each v ∈ V do

(a) compute shortest paths from v in
−→
GD

v ;

(b) if dist−→
GD

v
(v, t) > s for some t ∈ V \ {v}, then return “no”;
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2. return “yes”.

Proposition 1. The algorithm IsLatencyConstrainedCDS correctly determines whether a
given subset D ⊆ V of vertices is a latency-s CDS for a directed graph G = (V,E):

• in O(mn+ n2 log logn) time and linear space under nonnegative edge weights;

• in O(mn) time and linear space in the hop-based case.

Here, we are using the algorithm of Thorup (2004) to compute SSSP in time O(m+n log log n)
in the nonnegative weights case, and BFS to solve SSSP in the hop-based case.

Given that this or some other verification procedure will be called repeatedly in our implemen-
tation, it is important that it runs as quickly as possible. For example, we would like to know: is
there a different verification procedure that, say, runs in linear time O(m+n)? Unfortunately, un-
der a complexity assumption called the strong exponential time hypothesis (SETH) of Impagliazzo
et al. (2001) and Impagliazzo and Paturi (2001), this is not possible.

Proposition 2. If SETH holds, then for every ε > 0 there exists no algorithm for verifying that a
subset D of vertices is a latency-s CDS that runs in time O(m2−ε), even in the simplest nontrivial
case of hop-based distances and s = 2.

The proof and discussions regarding the limitations of local search are provided in Section 1 of
the Online Supplement.

2.2 The Inapproximability of the Minimum Latency-s CDS Problem

We provide a hardness result for approximating the size of a minimum latency-s CDS. It is based
on the hardness result of Dinur and Steurer (2014) which states that approximating the minimum
hitting set problem to within a factor of (1−ε) lnh is NP-hard for every ε > 0, where h refers to the
number of subsets to hit, cf. Raz and Safra (1997); Alon et al. (2006); Moshkovitz (2012). Also, see
similar hardness results based on the stronger assumption that NP does not have quasipolynomial-
time algorithms (Lund and Yannakakis, 1994; Feige, 1998). Note that |U | = O(hc) for some constant
c in Dinur and Steurer’s result.

Problem: The minimum hitting set problem.
Input: a family F1, . . . , Fh ⊆ U of subsets of U .
Output: A minimum cardinality subset D ⊆ U such that |D ∩ Fi| ≥ 1 for every i = 1, . . . , h.

Theorem 1. There exists a polynomial-time algorithm that, when given an instance ((F1, . . . , Fh), U)
of the minimum hitting set problem, creates an instance (G = (V,E), w, s) of the minimum latency-s
CDS problem that satisfies:

• |V | = 4 + h+ |U | and s = 2 = diam(G) and we = 1 for each e ∈ E;

• there exists a k-hitting set if and only if there exists a (k + 2)-vertex latency-s CDS.

Proof. Let V = {r, a, b, c} ∪ T ∪ U , where T = {t1, . . . , th}. Thus, |V | = 4 + h + |U |. Construct
E by bidirecting the following edges. Connect r to every vertex of U ∪ {a}. Connect a to every
vertex of U . Connect b to every vertex of T ∪ U . Make {a, b, c} a triangle. Finally, for each Fi in
the hitting set instance, connect ti to every vertex v ∈ Fi ⊆ U .

( =⇒ ) Suppose that D ⊆ U is a hitting set of size k. It can be verified that D ∪ {a, b} is a
latency-2 CDS for G, i.e., that for every ordered pair of nodes (i, j) with i 6= j and (i, j) /∈ E, there
is a node v ∈ D ∪ {a, b} such that (i, v) and (v, j) are edges in E.
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(⇐= ) Now, suppose thatD ⊆ V is a latency-2 CDS of size k+2. We argue thatD∩U is a hitting
set of size at most k. Observe that there is no edge (c, r) and so to ensure 2-hop communication from
c to r, D must contain a vertex from N+(c)∩N−(r), and N+(c)∩N−(r) = {a} so a ∈ D. Similarly,
(c, t1) is not an edge and N+(c) ∩N−(t1) = {b} so b ∈ D. This shows that |D ∩ U | ≤ |D| − 2 = k.
Now we show that D ∩ U is a hitting set. Recall that, for each i = 1, . . . , h, the edge (r, ti) does
not exist. So, since D is a latency-2 CDS, at least one vertex from N+(r)∩N−(ti) = Fi ⊆ U must
belong to D. Thus, D ∩ U is a hitting set of size at most k.

Corollary 1 (Inapproximability). There is a constant α > 0 such that it is NP-hard to approximate
the minimum latency-2 CDS problem to within a factor of α lnn, where n refers to the number of
vertices, even under bidirected edges and hop-based distances.

Proof. This follows by Theorem 1 and the inapproximability of hitting set (Raz and Safra, 1997;
Alon et al., 2006; Moshkovitz, 2012; Dinur and Steurer, 2014).

3 Integer Programming Formulations

In what follows, we propose two IP formulations for the minimum latency-s CDS problem: CUT
and POLY.

3.1 Formulation CUT

Here we propose the formulation called CUT. It has n binary variables and an exponential number
of constraints—one for each (minimal) length-s vertex cut.

Definition 4 (length-s vertex cut). A subset C ⊆ V of vertices is a length-s vertex cut of a directed,
edge-weighted graph G = (V,E) if diam(G− C) > s.

The correctness of formulation CUT is a consequence of the following characterization.

Proposition 3 (Characterization of latency-s CDS). A subset D ⊆ V of vertices is a latency-s
CDS for G if and only if |D ∩ C| ≥ 1 for every length-s vertex cut C ⊂ V .

Proof. ( =⇒ ) Assume that D ⊆ V is a latency-s CDS and suppose, for sake of contradiction, that
C ⊂ V is a length-s vertex cut with |D∩C| = 0. By definition of length-s vertex cut, diam(G−C) >
s, i.e., there exist vertices a, b ∈ V \ C such that distG−C(a, b) > s. By assumption that D is a
latency-s CDS, there is an a-b path of length at most s whose interior vertices belong solely to D,
i.e., distG[D∪{a,b}](a, b) ≤ s. Since D ∪ {a, b} ⊆ V \ C we have distG[V \C](a, b) ≤ distG[D∪{a,b}](a, b)
which results in the following contradiction:

s < distG−C(a, b) , distG[V \C](a, b) ≤ distG[D∪{a,b}](a, b) ≤ s.

( ⇐= ) By the contrapositive. Suppose that D ⊆ V is not a latency-s CDS, i.e., there exist
vertices a, b ∈ V such that there is no a-b path of length at most s whose interior vertices belong to
D, i.e., distG[D∪{a,b}](a, b) > s. This implies that diam(G[D∪{a, b}]) > s, and so C := V \(D∪{a, b})
is a length-s vertex cut. Moreover, |D ∩ C| = 0, as desired.
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Proposition 3 immediately implies the correctness of the formulation CUT:

min
∑
i∈V

xi (8)∑
i∈C

xi ≥ 1, ∀ length-s vertex cut C ⊂ V (9)

xi ∈ {0, 1}, ∀i ∈ V. (10)

In general, there can be exponentially many of the constraints (9), even if we restrict ourselves to
inclusion-minimal length-s vertex cuts. This formulation generalizes the CDS formulation based
on vertex cuts that is essentially due to Fujie (2004). We address the separation complexity for
constraints (9) in Section 4.

Not every valid inequality of the form
∑

i∈C xi ≥ 1 is a length-s vertex cut inequality. For
example,

∑
i∈V \{v} xi ≥ 1 is valid when G = (V,E) is the bidirected 4-cycle, but V \ {v} is not a

length-s vertex cut. However, the following shows that the length-s vertex cut inequalities are the
only meaningful valid inequalities of this type.

Lemma 1. Let C ⊂ V . The inequality |S ∩ C| ≥ 1 holds for every latency-s CDS S ⊆ V if and
only if C is a superset of some length-s vertex cut C ′.

Proof. The ‘if’ direction follows easily by Proposition 3, so suppose that |S∩C| ≥ 1 holds for every
latency-s CDS S ⊆ V . Let D = V \C. By our assumption, D cannot be a latency-s CDS, i.e., there
exist vertices a, b ∈ V such that distG[D∪{a,b}](a, b) > s. So, s < diam(G[D∪{a, b}]) = diam(G−C ′),
where C ′ = V \ (D ∪ {a, b}). Thus, C ′ is a length-s vertex cut for G, and C ⊇ C ′, as desired.

Given that the minimum latency-s CDS problem admits the formulation CUT (and by Lemma 1),
there are immediate polyhedral consequences (cf. Sassano (1989)), so we provide the following
proposition without proof.

Proposition 4 (Basic polyhedral analysis). The convex hull of (characteristic vectors of) latency-s
CDS’s is full-dimensional if and only if every length-s vertex cut has size at least two. Further, if
it is full-dimensional, then

1. for each v ∈ V ,

(a) xv ≤ 1 induces a facet;

(b) xv ≥ 0 induces a facet if and only if v does not belong to a length-s vertex cut of size
two.

2. for C ⊂ V , the inequality
∑

i∈C xi ≥ 1 induces a facet if and only if

(a) C is a minimal length-s vertex cut, and

(b) for each v ∈ V \ C there exists c ∈ C such that (V \ C) ∪ {c} \ {v} is a latency-s CDS.

3.2 Generalizing the Formulation CUT for Fault-Tolerance

Here, we consider the robust or fault-tolerant variant of a latency-s CDS. That is, we are interested
in a vertex subset that remains a latency-s CDS when few vertices fail.

Definition 5. A subset D ⊆ V of vertices is an r-robust latency-s CDS for graph G if, for every
F ⊆ D with |F | < r, the vertex subset D \ F is a latency-s CDS for G.

A consequence of Proposition 3 is the following characterization.
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Corollary 2 (Characterization of r-robust latency-s CDS). A subset D ⊆ V of vertices is an
r-robust latency-s CDS if and only if |D ∩ C| ≥ r for every length-s vertex cut C ⊂ V .

Corollary 2 immediately implies the correctness of the following formulation for the minimum
r-robust latency-s CDS problem:

min
∑
i∈V

xi (11)∑
i∈C

xi ≥ r, ∀ length-s vertex cut C ⊂ V (12)

xi ∈ {0, 1}, ∀i ∈ V. (13)

This formulation generalizes previously existing formulations for the minimum k-k-CDS prob-
lem (Ahn and Park, 2015; Buchanan et al., 2015).

Figure 1(b) gives a feasible solution to this problem when (s, r) = (3, 2) (using hop-based
distances and treating the undirected edges as bidirected edges). That is, the gray vertices remain
a latency-3 CDS when one of them fails. This is also an optimal solution for (s, r) = (2, 1). However,
there is no solution for (s, r) = (2, 2), as evidenced by the length-2 vertex cut C = {5}. Indeed,
this implies that the inequality x5 ≥ 2 is valid, but of course no binary vector x can satisfy this
constraint.

We remark that our formalization of a fault-tolerant low-latency virtual backbone might not
provide for r vertex-disjoint paths of length at most s (of CDS vertices) between every pair of
vertices. An example is given in Figure 3, treating the undirected edges as bidirected edges. This
should not be surprising given that there is, in general, no “Menger’s theorem” for length-bounded
paths, cf. Lovász et al. (1978).

a b

Figure 3: A CDS that maintains 5-hop communication paths when any one vertex fails, but that
does not have a pair of vertex-disjoint length-5 a-b paths. Observe that this is a unit disk graph.

3.3 Formulation POLY

Here we propose the formulation called POLY. It is introduced primarily for comparison purposes
and is inspired by a formulation for s-clubs given by Veremyev and Boginski (2012). It applies to
hop-based case.

As before, the binary variable xi represents the decision to include vertex i in the latency-s
CDS. The binary variable ytij equals one if and only if there exists a directed path in G from i to j
of length exactly t whose interior vertices belong to the chosen CDS. This variable is only defined
when t ≥ 2 and should not be confused with yij raised to the t-th power. To formulate our problem,
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we should write constraints that impose the following condition:

ytik = 1 ⇐⇒
(

there exists j ∈ N−(k) such that yt−1ij = 1 and xj = 1
)
.

In words, there is a path (across CDS nodes) from i to k of length t if and only if (i) there is a path
(across CDS nodes) of length t− 1 from i to some in-neighbor j of node k, and (ii) node j belongs
to the CDS. When t ≥ 3, this equivalence can be formulated as follows.

(⇐= ) yt−1ij + xj ≤ ytik + 1 ∀j ∈ N−(k)

( =⇒ ) ytik ≤
∑

j∈N−(k)

yt−1ij xj .

The second implication is enforced via a constraint that has products of binary variables. For
linearization purposes, introduce (binary) variables zt−1ij to replace the terms yt−1ij xj . To impose

that zt−1ij = yt−1ij xj , use the usual linear constraints:

zt−1ij ≤ yt−1ij

zt−1ij ≤ xj
yt−1ij + xj ≤ zt−1ij + 1.

These ideas lead to the following formulation, where the special case t = 2 is handled via
constraints (15) and (16). Let T≥3 := {3, . . . , s} and N−[j] := N−(j) ∪ {j}.

min
∑
i∈V

xi (14)

xj ≤ y2ik j ∈ N+(i) ∩N−(k), i ∈ V \ {k}, k ∈ V (15)

y2ik ≤
∑

j∈N+(i)∩N−(k)

xj i ∈ V \ {k}, k ∈ V (16)

yt−1ij + xj ≤ ytik + 1 i ∈ V \ {j, k}, (j, k) ∈ E, t ∈ T≥3 (17)

ytik ≤
∑

j∈N−(k)

zt−1ij i ∈ V \ {k}, k ∈ V, t ∈ T≥3 (18)

zt−1ij ≤ yt−1ij i ∈ V \ {j}, j ∈ V, t ∈ T≥3 (19)

zt−1ij ≤ xj i ∈ V \ {j}, j ∈ V, t ∈ T≥3 (20)

yt−1ij + xj ≤ zt−1ij + 1 i ∈ V \ {j}, j ∈ V, t ∈ T≥3 (21)
s∑

t=2

ytij ≥ 1 i ∈ V \N−[j], j ∈ V (22)

xi ∈ {0, 1} i ∈ V (23)

ytij ∈ {0, 1} i ∈ V \ {j}, j ∈ V, t ∈ {2, . . . , s} (24)

ztij ∈ {0, 1} i ∈ V \ {j}, j ∈ V, t ∈ {2, . . . , s− 1}. (25)

The constraints (22) ensure that there is a path of length at most s (across CDS vertices) from i
to j when (i, j) /∈ E. So, by the ideas presented above, it is straightforward to prove the following.

Theorem 2. Under hop-based distances, the above is a correct formulation for the minimum
latency-s CDS problem and has Θ(sn2) variables, Θ(snm) constraints, and Θ(snm) nonzeros.
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Since modern MIP solvers use sparse matrix representation, this formulation’s size in computer
memory can be approximated by the number Θ(snm) of nonzeros. This is much less than the
quantity obtained by multiplying the number of variables by the number of constraints.

Not all of these variables and constraints may be necessary. For example, if G is bidirected,
we can assume that ytij = ytji. If desired, the user can impose these constraints ytij = ytji when
implementing the formulation, and the MIP solver will perform the appropriate substitutions in its
presolve phase.

Based on our computational experiments, it is possible that formulation POLY is weaker than
CUT, although we could not find a proof. In Section 2 of the Online Supplement, we provide a
fractional point (x∗, y∗, z∗) that belongs to POLY’s LP relaxation, but its x∗ does not belong to
CUT’s LP relaxation.

4 The Complexity of the Formulations

In this section, we determine the separation complexity for the constraints defining formulation
CUT and its fault-tolerant generalization. On the way, we answer an open question of Xu et al.
(2005) regarding the complexity of computing a graph’s fault diameter.

4.1 Computing the Fault Diameter of Graphs

As a helpful first step to determining the separation complexity, we show that a related problem,
which we call Diameter Interdiction by Node Deletion, is NP-complete.

Problem: Diameter Interdiction by Node Deletion.
Input: a simple graph G = (V,E) and integers q and L.
Question: Is there a subset C ⊂ V of q vertices such that diam(G− C) > L?

This problem is defined for an undirected and unweighted graph G, and the diameter that is
referred to is hop-based.

Theorem 3. For each L ≥ 5, Diameter Interdiction by Node Deletion is NP-complete.

To prove this theorem, we craft reductions from Length-Bounded a-b Node Cut, which is
known to be NP-complete and hard to approximate (Baier et al., 2010). Notice that this problem
has specified end nodes a and b, while Diameter Interdiction by Node Deletion does not.
We provide two reductions, given in Lemma 2 and Lemma 3, that together prove Theorem 3.

Problem: Length-Bounded a-b Node Cut.
Input: A simple graph G′ = (V ′, E′), nonadjacent a, b ∈ V ′, and integers q′ and L′.
Question: Is there a subset C ′ ⊆ V ′ \ {a, b} of q′ vertices such that distG′−C′(a, b) > L′?

Lemma 2. For each odd L ≥ 5, Diameter Interdiction by Node Deletion is NP-complete.

Proof. Membership in NP is obvious. For the reduction, consider an instance of Length-Bounded
a-b Node Cut defined by graph G′ = (V ′, E′), vertices a, b ∈ V ′, and integers q′ and odd L′ ≥ 5.
Let q = q′ and L = L′. Now we construct G = (V,E). The idea is to connect every pair of vertices
from G′ (besides a and b) by carefully adding many short paths so that the only possible way to
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cheaply disrupt the diameter of G is to cut all short paths from a to b. Construct V as follows.

V := V ′ ∪ T ∪A ∪B ∪W
T := {ti | 1 ≤ i ≤ q + 1}

A :=

{
aji

∣∣∣∣ 1 ≤ i ≤ q + 1, 1 ≤ j ≤ L− 1

2

}
B :=

{
bji

∣∣∣∣ 1 ≤ i ≤ q + 1, 1 ≤ j ≤ L− 1

2

}
W :=

{
vji

∣∣∣∣ 1 ≤ i ≤ q + 1, 1 ≤ j ≤ L− 3

2
, v ∈ V ′ \ {a, b}

}
.

Notice that |V | = O(qL|V ′|) and q ≤ |V ′| and L ≤ |V ′|, so the reduction will be polynomial.
Construct the edge set E of G as follows. First, connect the vertices of V ′ so that G[V ′] = G′.

Then make T a clique in G. Similarly, make each Aj := {aji | 1 ≤ i ≤ q + 1} a clique. Do the same

for each Bj := {bji | 1 ≤ i ≤ q + 1} and for each W j(v) := {vji | 1 ≤ i ≤ q + 1}. Connect a to every
vertex of A1; and every vertex of A1 to every vertex of A2; and so on. Connect b to every vertex of
B1; and every vertex of B1 to every vertex of B2; and so on. Then for every v ∈ V ′\{a, b}, connect v
to every vertex of W 1(v); and every vertex of W 1(v) to every vertex of W 2(v); and so on. Finally,
letting p = L−1

2 , connect every vertex of T to every vertex of Ap ∪ Bp ∪
(
∪v∈V ′\{a,b}W p−1(v)

)
.

Creating E obviously can be done in polynomial time. See Figure 4 for an illustration.
Observe that there exist at least q + 1 (internally) node-disjoint paths of length at most L

between every pair of vertices of G (the interior vertices of which belong to V \V ′), except possibly
for the pair {a, b}. Moreover, (simple) a-b paths of length at most L in G can only cross vertices of
V ′. Thus, it can be argued that the instance (G′, a, b, q′, L′) of Length-Bounded a-b Node Cut
is a “yes” if and only if the instance (G, q, L) of Diameter Interdiction by Node Deletion
is a “yes.”

Lemma 3. For each even L ≥ 5, Diameter Interdiction by Node Deletion is NP-complete.

Proof. Membership in NP is obvious. For the reduction, consider an instance of Length-Bounded
a-b Node Cut defined by graph G′ = (V ′, E′), vertices a, b ∈ V ′, and integers q′ and even L′ ≥ 5.
Let q = q′ and L = L′. Now we construct G = (V,E). The main idea behind the reduction is the
same as before, but the construction is slightly different. Construct V as follows.

V := V ′ ∪ T ∪ T ′ ∪W
T := {ti | 1 ≤ i ≤ q + 1}
T ′ :=

{
t′i | 1 ≤ i ≤ q + 1

}
W :=

{
vji

∣∣∣∣ 1 ≤ i ≤ q + 1, 1 ≤ j ≤ L

2
− 1, v ∈ V ′

}
.

Notice that |V | = O(qL|V ′|) and q ≤ |V ′| and L ≤ |V ′|, so the reduction will be polynomial.
Construct the edge set E of G as follows. First, connect the vertices of V ′ so that G[V ′] = G′.

Then make T ∪ T ′ a clique in G. Similarly, make each W j(v) := {vji | 1 ≤ i ≤ q + 1} a clique. For
every v ∈ V ′, connect v to every vertex of W 1(v); and every vertex of W 1(v) to every vertex of
W 2(v); and so on. Let p = L

2 − 1. Connect every vertex of T to every vertex of ∪v∈V ′\{b}W p(v).
Similarly, connect every vertex of T ′ to every vertex of ∪v∈V ′\{a}W p(v). Creating E obviously can
be done in polynomial time. See Figure 5 for an illustration.
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Kq+1

G′ − a− b

G′

L−3
2

Figure 4: Illustration of the reduction for odd L ≥ 5. Here, Kn is a complete graph on n nodes.
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Observe that there exist at least q + 1 (internally) node-disjoint paths of length at most L
between every pair of vertices of G (the interior vertices of which belong to V \V ′), except possibly
for the pair {a, b}. Moreover, (simple) a-b paths of length at most L in G can only cross vertices of
V ′. Thus, it can be argued that the instance (G′, a, b, q′, L′) of Length-Bounded a-b Node Cut
is a “yes” if and only if the instance (G, q, L) of Diameter Interdiction by Node Deletion
is a “yes.”

a b

Kq+1 Kq+1

. . .

. . .

. . .

. . .

Kq+1

Kq+1

...

Kq+1

Kq+1

Kq+1

...

Kq+1

Kq+1

Kq+1

...

Kq+1

Kq+1

Kq+1

...

Kq+1

Kq+1

Kq+1

...

Kq+1

G′ − a− b

G′

L
2 − 1

Figure 5: Illustration of the reduction for even L ≥ 5.

Researchers have studied related notions of the fault diameter of a graph (Krishnamoorthy and
Krishnamurthy, 1987; Xu, 2001). For example, Xu (2001) defines the f -fault diameter of graph
G = (V,E) to be

Df (G) := max {diam(G− F ) | F ⊆ V, |F | < f} ,

and states that computing this value “is a quite difficult problem,” but no justification is given3.
Later, Xu et al. (2005) listed its NP-hardness as an open problem. Theorem 3 implies that comput-
ing Df (G) is indeed NP-hard when f is part of the input, say, by letting f = q + 1 and returning
“yes” if Df (G) > L.

Corollary 3. Computing the f -fault diameter is NP-hard when f is part of the input.
3 Schoone et al. (1987) show a related result for increasing the diameter by edge deletions, but it is not clear how

to modify their result for our purposes. Their definition of the problem (strangely) only allows edge deletions that
maintain connectivity of the graph. This allows them to perform a reduction from Hamiltonian Path by seeking
subsets of m − (n − 1) edges whose removal increases the diameter to n − 1. We feel that this is an unsatisfying
hardness reduction since a minimum cut likely has fewer edges, and its removal would make the diameter infinite. In
contrast, our diameter parameter can be a small constant, and we allow for arbitrary vertex deletions.
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4.2 The Separation Problem for CUT

Formulation CUT has an exponential number of constraints (9), as does its fault-tolerant general-
ization (12), making it a nontrivial question as to how they should be used. A helpful observation,
however, is that by the polynomial equivalence of optimization and separation (Grötschel et al.,
1993), their LP relaxations can be solved in polynomial time if and only if their separation problems
(defined below) can be solved in polynomial time.

Problem: Separation Problem for Formulation CUT.
Input: a directed and edge-weighted graph G = (V,E), a weight x∗v ∈ [0, 1] for each v ∈ V , an
integer r ≥ 1, a number s.
Output: (if any exist) a length-s vertex cut C ⊆ V with

∑
i∈C x

∗
i < r.

For purposes of generality, we define this separation problem for the fault-tolerant generalization,
which has right-hand-side r. We provide both positive and negative results.

Theorem 4. Under hop-based distances, the separation problem is:

1. polynomial-time solvable for s ∈ {2, 3, 4}, for every r ≥ 1;

2. (in its decision version) NP-complete for every s ≥ 5, even when r = 1.

Proof. First, we prove that item 2 holds. Membership in NP is clear, so we only show hardness. The
reduction is from an instance of Diameter Interdiction by Node Deletion given by (G, q, L),
which is NP-complete for each L ≥ 5 by Theorem 3. Bidirect G = (V,E) yielding directed graph
←→
G = (V,

←→
E ). Let r = 1, s = L, and x∗i = 1

q+1 for every i ∈ V . We argue that (G, q, L) is

a “yes” instance of Diameter Interdiction by Node Deletion if and only if (
←→
G , x∗, r, s)

admits a violated length-s vertex cut inequality (12). Suppose there is a violated length-s vertex

cut inequality (12) for some C ⊆ V . Then, |C|q+1 =
∑

i∈C x
∗
i < 1, i.e., |C| ≤ q, and the instance of

Diameter Interdiction by Node Deletion is a “yes.” Now, if there is a length-s vertex cut

C ′ ⊆ V with |C ′| ≤ q for
←→
G , then

∑
i∈C′ x

∗
i = |C′|

q+1 ≤
q

q+1 < 1 and so x∗ violates the length-s vertex
cut inequality

∑
i∈C′ xi ≥ 1.

Now, we discuss why item 1 holds. In the cases s ∈ {2, 3, 4}, we can find a most-violated length-s
vertex cut inequality (12) by computing, for each (a, b) ∈ (V × V ) \E, a minimum-weight length-s
a, b-vertex cut and comparing its weight to r. The cases s ∈ {2, 3} are fairly straightforward,
e.g., for s = 2 the solution is N+(a) ∩ N−(b). The case s = 4 was (essentially) shown by Lovász
et al. (1978) to be polynomial-time solvable by reducing it to a particular instance of the min-cut
problem, cf. Theorem 4.3.1 of Xu (2001). Since this min-cut instance can be constructed in linear
time (and it is actually a subgraph of the input graph), this minimum-weight length-s a, b-vertex
cut subproblem can be solved in time O(mn) by Orlin (2013). Solving these subproblems for every
missing edge (a, b) gives a total time of O(mn3), which is polynomial.

By standard arguments, the flow-based separation routines referenced in the proof of Theo-
rem 4 imply polynomial-size extended formulations for the LP relaxation of CUT when s ∈ {3, 4},
see Martin (1991). However, these formulations would have roughly mn2 variables, making them
too large to be practical. Hence, we do not discuss them further.

4.3 Verification and Integer Separation for the Fault-Tolerant Variant

The problem of verifying whether a given subset D ⊆ V of vertices is an r-robust latency-s CDS
is nontrivial. In a brute force approach, enumerate all subsets F ⊆ D of r − 1 vertices and verify
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that D\F is indeed a latency-s CDS. By algorithm IsLatencyConstrainedCDS, this takes time( |D|
r−1
)
O(n3) = O(nr+2), which is polynomial for any constant r. A natural question is whether this

test can be performed in polynomial time when r is part of the problem input. Unfortunately, the
likely answer is “no,” as this is coNP-complete.

Corollary 4. When r is part of the input, the problem of verifying whether D ⊆ V is an r-robust
latency-s CDS is coNP-complete for each fixed s ≥ 5. This holds even for bidirected edges and
hop-based distances.

Proof. Membership in coNP follows because a length-s vertex cut C ⊆ V with |C| < r is a
suitable witness when it is a “no” instance. For the reduction, consider an instance of Diameter
Interdiction by Node Deletion defined by a simple graph G = (V,E) and integers q and L.
Bidirect its edges and let s = L, r = q + 1, and D = V . It can be observed that the instance
of Diameter Interdiction by Node Deletion is a “yes” instance if and only if D is not an
r-robust latency-s CDS of this bidirected graph.

Remark 1. As a consequence of Corollary 4, the separation problem for the constraints (12), with
r being part of the input, is hard even when x∗ is integer.

5 Computational Experiments

In this section, we provide results from our computational experiments. First, we demonstrate
the importance of (quickly) strengthening the length-s vertex cut inequalities. Second, we provide
computational results demonstrating the importance of providing an initial heuristic solution to
the MIP solver. Third, we compare our full implementation of CUT with the polynomial-size for-
mulation POLY. Our tests demonstrate the superiority of CUT over POLY. Finally, we experiment
with formulation CUT for:

1. s ∈ {diam(G),diam(G) + 1,diam(G) + 2, n− 1};
2. the fault-tolerant case with r = 2;

3. a class of instances representing node-weighted, transmitter-based delays.

All of our experiments are conducted on a Dell Precision Tower 7000 Series (7810) machine
running Windows 10 enterprise, x64, with Intel R© Xeon R© Processor E52630 v4 (10 cores, 2.2GHz,
3.1GHz Turbo, 2133MHz, 25MB, 85W) – that is 20 logical processors – and 32 GB memory. The IP
formulations were implemented in Microsoft Visual Studio 2015 in C++ for Gurobi version 7.0.2.
We use default settings with the exception that we force Gurobi to use the concurrent method
(which uses primal simplex, dual simplex, and barrier on different threads) for solving the root LP
relaxation for POLY, as this formulation is highly degenerate and typically barrier is fastest. We
impose a time limit of 3600 seconds on each instance and use the same test instances that have been
used in the previous literature on the minimum CDS problem by Lucena et al. (2010); Simonetti
et al. (2011); Fan and Watson (2012); Gendron et al. (2014); Buchanan et al. (2015); Li and Aneja
(2017). This testbed includes both real-life and synthetically generated instances, all of which are
undirected. In our experiments, we bidirect their edges.

5.1 The Importance of Strengthening the Inequalities

Since formulation CUT can have exponentially many constraints when s ≥ 3, we initialize it with
only some of the constraints. Others are added as needed via Gurobi’s lazy constraint callback
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features. Specifically, we start with the vertex cuts given by N+(i), i ∈ V (or inclusion-minimal
subsets thereof that are also length-s vertex cuts). Then, within the branch-and-bound tree, vio-
lated length-s vertex cut inequalities are added on-the-fly.

Since the separation problem for the length-s vertex cut inequalities is NP-hard, we only separate
integer points that the solver encounters. Each of these possible solutions D ⊆ V will satisfy the
initial constraints given to the solver, but D may not actually be feasible for the latency-s CDS
problem. In this case, C := V \ D is a length-s vertex cut for the graph, and the inequality∑

i∈C xi ≥ 1 would be valid for our problem and would cut off the binary point representing D.
However, this inequality is likely very weak, so we strengthen the inequality, i.e., find a minimal
subset of C that is also a length-s vertex cut. This is done when initializing the formulation with
the vertex cuts N+(i), i ∈ V and also when adding inequalities on-the-fly. The details are given
in Section 3 of the Online Supplement. Theorem 2 of the Online Supplement shows that one can
find a violated minimal length-s vertex cut inequality in time O(n3).

We also experimented with separating fractional points, particularly when s = 3 as this case
of the separation problem is polynomial-time solvable. However, the fastest separation procedure
that we are aware of takes time O(mn3) and was ultimately unhelpful—in all nine of the different
implementations that we tried. See Section 4 of the Online Supplement for more details.

5.2 The Importance of Providing a Heuristic Solution to the Solver

See Section 5 of the Online Supplement.

5.3 Comparison with Formulation POLY

In Table 1, we compare the performance of CUT with that of POLY. In these tests, we set s =
diam(G), provide an MIP start using BestInHeuristic, and exclude instances with s = 2. The
reason for excluding the s = 2 comparisons is that CUT and POLY are equally strong when s = 2,
and so CUT will obviously perform better due to its smaller size. Since our instances are bidirected,
we fix ytij = ytji as discussed in Section 3.3.

The results demonstrate the superiority of CUT. It solves the 11 instances solved by POLY—
and 9 others. Ten instances are left unsolved by both approaches; CUT provides better bounds
on all of them. The formulation CUT also quickly solves some instances that POLY left unsolved
after an hour. For example, CUT solved v50 d5, v70 d5, v70 d10, and v70 d30 each in under five
seconds, while POLY solved none of them in the time limit.

5.4 The Cost of Low Latency

Imposing that a dominating set be connected is not too costly. Indeed, the domination number
γ(G) and the connected domination number γc(G) are a constant factor apart. Specifically, they
satisfy γ(G) ≤ γc(G) ≤ 3γ(G)− 2, see Haynes et al. (1998). In contrast, we show that the cost of
low latency can be very large—even when decreasing the latency parameter s by one. We denote
by γlats (G) the size of a minimum latency-s CDS in G.

Proposition 5 (Potentially large cost of low latency). For every latency parameter s ≥ 2, there
is an infinite class of graphs G for which γlats+1(G) ≤ s, but γlats (G) ≥ Ω(n). This holds even when
edges are bidirected and distances are hop-based.

Proof. One such class of graphs are obtained by taking the Cartesian products Kq�Ps of a complete
graph Kq and a path graph Ps and then bidirecting the edges. These graphs have sq vertices and
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Table 1: A comparison of the performance of formulation CUT with that of POLY. For all graphs
G, we set s = diam(G) and exclude instances where s = 2. We report the optimal objective (or
the best lower/upper bounds [L,U ] after one hour) under the columns labeled obj. We also give
the total solve time (total), where a dash indicates > 3600 seconds.

POLY CUT
graph s hobj obj total obj total

v30 d10 8 15 15 2.71 15 0.02
v30 d20 5 8 8 111.14 8 0.03
v30 d30 3 8 8 12.59 8 0.10
v50 d5 14 32 [31,32] - 32 0.07
v50 d10 5 20 18 2711.41 18 0.18
v50 d20 3 14 14 6.31 14 0.11
v50 d30 3 8 8 398.41 8 1.12
v70 d5 8 36 [26,36] - 32 0.53
v70 d10 4 31 [28,29] - 29 2.98
v70 d20 3 18 [11,18] - 17 305.96
v70 d30 3 8 [6,7] - 7 3.33
v100 d5 5 57 [42,57] - 56 17.91
v100 d10 4 31 [13,31] - [22,26] -
v100 d20 3 20 [9,20] - [14,20] -
v120 d5 6 40 [16,40] - 31 1087.17
v120 d10 3 68 63 1522.53 63 10.31
v120 d20 3 21 [7,21] - [10,21] -
v120 d30 3 12 [4,12] - [7,12] -
v150 d5 5 54 [19,54] - [30,54] -
v150 d10 3 65 [35,65] - [43,61] -
v150 d20 3 22 [6,22] - [9,22] -
v200 d5 4 92 [43,92] - [49,92] -
v200 d10 3 64 [24,64] - [26,64] -
v200 d20 3 22 [6,22] - [8,22] -

IEEE-14 5 5 5 0.08 5 0.01
IEEE-30 6 14 14 0.29 14 0.01
IEEE-57 12 35 35 57.65 35 0.04
RTS-96 13 40 [35,39] - 37 0.14
IEEE-118 14 48 48 130.70 48 0.15
IEEE-300 24 139 [6,139] - 135 11.98
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diameter s when q ≥ 2. These graphs Kq�Ps can be defined as having vertex set V 1 ∪ · · · ∪ V s,
where each V i = {vi1, . . . , viq}. For the edges, let each V i be a clique, and connect each vertex vij to

its counterpart vi+1
j from the next V i+1. Bidirect all edges.

See that γlats+1(Kq�Ps) ≤ s, since the s vertices vi1 form a feasible solution. Now we show that
γlats (Kq�Ps) ≥ Ω(n) in two cases. When s = 2, the q vertex subsets {v1i , v2i+1} for i = 1, . . . , q − 1
and {v1q , v21} form length-2 cuts and are disjoint. Thus, γlat2 (Kq�P2) ≥ q = n/2. When s ≥ 3, each
vertex vij with 2 ≤ i ≤ s− 1 is a length-s vertex cut on its own (by the resulting distance between

nodes v1j and vsj ), so γlats (Kq�Ps) ≥ (s− 2)q ≥ n/3.

We observe the cost of low latency “in practice” through the computational results given in
Table 2. We report the solution sizes and runtimes for different values of the latency parameter
s ∈ {diam, diam +1,diam +2, n − 1} under hop-based distances. Thus, we have the strictest case
of s = diam and the most relaxed value of s = n − 1, which corresponds to the minimum CDS
problem when edges are bidirected. The solve times tend to improve as s increases, and we are
able to solve all instances when s = n− 1. However, this is not universally the case, e.g., for graph
v100 d5. Some of the lower bounds can immediately be improved based on the table. For example,
we can claim a lower bound of 10 for the instance v150 d20 when s = diam, since 10 is optimal for
the less restrictive case s = diam +1.

The runtimes for the case s = n − 1 closely resemble those given by Buchanan et al. (2015)
for the minimum CDS problem. This is unsurprising given that the approach taken here is very
similar. However, the instance IEEE-300 takes longer here (514.34 vs. 52.88 seconds). This can be
attributed to the 492.86 seconds spent in our slower callback routines.

In some applications, achieving low latency is desirable but should not be viewed as a “hard”
constraint. In this case, the tradeoff between CDS size and the latency guarantee should be con-
sidered. For example, the results for graphs v30 d10 and IEEE-14 show that low latency comes for
free; there is a minimum CDS that also satisfies the most restrictive (but feasible) latency value
s = diam. On the other hand, for the graphs v100 d30 and v150 d30, the optimal objective triples
when tightening the latency parameter from s = 3 to s = 2 and may not be justified.

We also give the optimal objectives for the dominating (s−2)-club problem. As observed in the
introduction, the formalization based on dominating (s−2)-clubs does not quite capture the intent
of the latency constraints, and here we see that it usually gives the impression that no suitable
low-latency CDS exists, and yet there exists a latency-s CDS. This occurs for 37 of the 47 graphs
when s = diam(G). An example is given in Figure 6(a). Also, Figure 6(b) shows an instance where
both problems are feasible but have different optimal solutions.

5.5 Results for the Fault-Tolerant Variant

See Section 6 of the Online Supplement.

5.6 Results when Delays are Node-Weighted and Transmitter-Based

In this section, we provide computational results for instances in which delays are node-weighted
and transmitter-based. The intent is to model wireless sensor networks in which delays depend on
the transmitting node. In our experiments, we make the simplifying assumption that the delay at
node i is a given constant wi. This is the time for node i to pass a message to any neighboring
node. Following the transformation given in the introduction, this means that the edges pointing
away from node i should have weight wi. However, if one were to look at our implementation, they
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Table 2: Results for different values of the latency parameter s. The case where s = n−1 is identical
to the minimum strongly connected dominating set problem. We also report the objective of the
dominating (s−2)-club problem (club). Here,∞ denotes infeasibility, and blank cells indicate that
s− 2 ≤ 0.

s = diam s = diam +1 s = diam +2 s = n− 1
graph diam club obj total club obj total club obj total obj total

v30 d10 8 ∞ 15 0.02 15 15 0.02 15 15 0.02 15 0.04
v30 d20 5 8 8 0.03 7 7 0.01 7 7 0.02 7 0.01
v30 d30 3 ∞ 8 0.10 5 5 0.05 4 4 0.01 4 0.01
v30 d50 2 7 0.01 3 3 0.01 3 3 0.01 3 0.01
v30 d70 2 3 0.04 2 2 0.01 2 2 0.01 2 0.01

v50 d5 14 32 32 0.07 32 32 0.13 31 31 0.19 31 0.36
v50 d10 5 19 18 0.18 14 14 0.18 13 13 0.11 12 0.23
v50 d20 3 ∞ 14 0.11 7 7 0.27 7 7 0.17 7 0.17
v50 d30 3 ∞ 8 1.12 5 5 0.10 5 5 0.12 5 0.12
v50 d50 2 9 0.17 3 3 0.10 3 3 0.02 3 0.02
v50 d70 2 4 0.79 2 2 0.03 2 2 0.02 2 0.02

v70 d5 8 32 32 0.53 29 29 0.74 28 28 1.38 27 0.76
v70 d10 4 ∞ 29 2.98 17 16 8.87 13 13 0.47 13 0.10
v70 d20 3 ∞ 17 305.96 8 8 0.21 7 7 0.19 7 0.14
v70 d30 3 ∞ 7 3.33 5 5 0.17 5 5 0.16 5 0.16
v70 d50 2 10 0.56 3 3 0.05 3 3 0.05 3 0.05
v70 d70 2 5 1.57 2 2 0.10 2 2 0.06 2 0.06

v100 d5 5 ∞ 56 17.91 40 [34,36] - 29 29 2018.43 24 0.56
v100 d10 4 ∞ [22,26] - 15 15 4.24 14 14 0.41 13 0.25
v100 d20 3 ∞ [14,20] - 9 9 2.35 8 8 0.53 8 0.51
v100 d30 2 39 5.00 ∞ [7,12] - 6 6 0.94 6 0.98
v100 d50 2 12 61.27 4 4 0.87 4 4 0.89 4 0.93
v100 d70 2 5 8.17 3 3 1.20 3 3 1.18 3 1.20

v120 d5 6 31 31 1087.17 28 28 97.26 26 26 4.36 25 0.62
v120 d10 3 ∞ 63 10.31 ∞ [17,31] - 15 15 202.51 13 0.69
v120 d20 3 ∞ [10,21] - 9 9 5.67 8 8 3.46 8 1.54
v120 d30 3 ∞ [7,12] - 6 6 1.10 6 6 1.20 6 1.10
v120 d50 2 [11,12] - 4 4 4.78 4 4 3.71 4 3.63
v120 d70 2 5 29.67 3 3 2.06 3 3 2.16 3 2.08

v150 d5 5 ∞ [30,54] - [28,33] [26,40] - [26,28] [26,33] - 26 2.10
v150 d10 3 ∞ [43,61] - ∞ [14,28] - 16 [15,18] - 14 4.94
v150 d20 3 ∞ [9,22] - 10 10 379.34 9 9 7.13 9 6.88
v150 d30 2 [35,41] - ∞ [6,11] - 6 6 7.65 6 3.96
v150 d50 2 [9,13] - 4 4 2.38 4 4 2.49 4 2.77
v150 d70 2 6 569.09 3 3 3.29 3 3 3.35 3 3.41

v200 d5 4 ∞ [49,92] - [31,52] [26,50] - [25,46] [26,35] - 27 10.00
v200 d10 3 ∞ [26,64] - ∞ [14,29] - [14,19] [14,21] - 16 301.83
v200 d20 3 ∞ [8,22] - 10 [9,11] - 9 9 183.40 9 184.27
v200 d30 2 [27,44] - ∞ [6,12] - 7 7 223.04 7 205.41
v200 d50 2 [8,15] - 4 4 145.90 4 4 7.44 4 7.84
v200 d70 2 [4,7] - 3 3 6.43 3 3 6.29 3 6.59

IEEE-14 5 5 5 0.01 5 5 0.01 5 5 0.01 5 0.01
IEEE-30 6 ∞ 14 0.01 13 13 0.01 11 11 0.01 11 0.01
IEEE-57 12 35 35 0.04 31 31 0.08 31 31 0.19 31 1.88
RTS-96 13 37 37 0.14 35 35 0.46 34 34 0.38 32 1.90
IEEE-118 14 48 48 0.15 46 46 0.25 45 45 0.25 43 1.18
IEEE-300 24 135 135 11.98 131 131 35.08 130 130 66.30 129 514.34
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(a) IEEE-30 (b) v50 d10

Figure 6: Side (a) shows a minimum latency-6 CDS for IEEE-30; there is no dominating 4-club.
Side (b) shows a minimum latency-5 CDS D and a minimum dominating 3-club D′ for the graph
v50 d10. Nodes in D ∪D′ are larger; nodes in D \D′ are white; nodes in D′ \D are black; nodes
in D ∩D′ are gray.

would see that our weights are stored by node. We prefer this representation since it is more space
efficient.

To ensure that the node-based delays wi used in our experiments are somewhat reasonable and
reproducible, we define them as follows, where dist(i, j) is hop-based.

wi :=

⌊
1000(n− 1)∑
j∈V dist(i, j)

⌋
.

The reasoning for defining wi in this way is as follows. So-called central nodes in the network
will be used more frequently to transmit information, resulting in longer queueing delays. The
quantity (n− 1)/

∑
j∈V dist(i, j) is the definition of (normalized) closeness centrality and the first

definition for wi that we tried. However, it is fractional, and the inexactness of later floating point
calculations caused problems. To avoid exact rational arithmetic, we wanted to round closeness
centrality to an integer, but this would give either a zero or a one. Multiplying by a large integer
(1000 in our case) allowed for more diverse delays.

Table 3 provides our results with these delays where s = diam(G) is set to be as restrictive
as possible while maintaining feasibility. They indicate a strength of our approach—that using
weighted distances has little impact on the performance.
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Table 3: Results for the weighted-distance variant. See Section 5.6 for weighting information.
graph s BB node hobj obj total

v30 d10 2281 0 21 21 0.02
v30 d20 2317 31 12 11 0.04
v30 d30 1751 117 19 18 0.07
v30 d50 1422 48 10 9 0.06
v30 d70 1585 0 8 7 0.04

v50 d5 2549 21 37 37 0.11
v50 d10 1961 377 29 29 0.29
v50 d20 1614 158 33 32 0.21
v50 d30 1743 6317 25 22 1.17
v50 d50 1400 523 14 14 0.27
v50 d70 1606 285 8 6 0.21

v70 d5 2055 919 50 48 0.71
v70 d10 1701 42 52 50 0.51
v70 d20 1624 10527 43 40 2.37
v70 d30 1716 3556 35 30 1.47
v70 d50 1404 5631 17 15 3.04
v70 d70 1581 328 8 8 0.47

v100 d5 1701 10376 79 76 3.37
v100 d10 1785 1820846 55 [47,51] -
v100 d20 1678 290399 34 [21,33] -
v100 d30 1211 13773 51 47 6.46
v100 d50 1378 244673 19 17 61.96
v100 d70 1571 1250 9 8 1.82

v120 d5 1948 542530 59 53 774.43
v120 d10 1471 97436 76 70 31.07
v120 d20 1659 2327430 47 [37,43] -
v120 d30 1695 4844453 47 40 1101.31
v120 d50 1389 6911583 18 [14,16] -
v120 d70 1559 475 10 9 3.21

v150 d5 1757 4407299 89 87 2378.46
v150 d10 1469 1686790 102 [81,92] -
v150 d20 1663 337800 50 [30,47] -
v150 d30 1209 4540949 58 [43,50] -
v150 d50 1371 4427905 24 [18,21] -
v150 d70 1559 317 12 10 4.38

v200 d5 1594 374407 137 [80,135] -
v200 d10 1503 419384 122 [83,109] -
v200 d20 1640 2184837 106 [84,96] -
v200 d30 1201 1162600 67 [45,63] -
v200 d50 1361 4196920 26 [20,23] -
v200 d70 1557 8868 12 11 46.41

IEEE-14 2154 0 8 8 0.01
IEEE-30 2121 0 16 16 0.02
IEEE-57 2306 0 41 41 0.11
RTS-96 2241 285 42 41 0.51
IEEE-118 2556 0 48 48 0.84
IEEE-300 2646 6558 141 137 66.90
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6 Conclusion

In this paper, we introduce a latency-constrained variant of the minimum CDS problem motivated
by applications in wireless sensor networks in which one seeks a virtual backbone that provides for
small end-to-end delays. We propose integer programming formulations based on length-bounded
vertex cuts. These formulations generalize the best-performing existing formulations for the min-
imum CDS problem and also generalize the best-performing formulations for the fault-tolerant
variant—the minimum k-connected k-dominating set problem. A branch-and-cut implementation
of formulation CUT makes easy work of synthetic instances having fewer than 100 nodes and
real-life instances with up to 300 nodes, significantly outperforming formulation POLY.

Our proposed formulations are in the same vein as the recent “thin” approaches for other
optimization problems (Fischetti et al., 2017, 2016). In ongoing and future research, we study
the potential of using similar thin formulations based on length-bounded vertex cuts for other
distance-constrained problems in networks, e.g., Buchanan and Salemi (2018).

In this paper, we focused on exact approaches. Only because our MIP solver Gurobi had
problems finding feasible solutions in an hour did we employ a simple construction heuristic. There
is certainly room for improvement on this front, although the negative results given in Section 1 of
the Online Supplement should not be ignored.
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