
Online Supplement for “The optimal design of low-latency virtual

backbones”

Hamidreza Validi and Austin Buchanan

School of Industrial Engineering & Management
Oklahoma State University

{hamidreza.validi,buchanan}@okstate.edu

June 3, 2019

1 SETH-Based Hardness Results

Below, we consider fundamental algorithmic questions about latency-s CDS’s. For example, how
quickly can one verify that a vertex subset is indeed a latency-s CDS? How quickly can one perform
local search moves for the minimum latency-s CDS problem? These problems admit relatively
straightforward algorithms that run in time O(mn) when distances are hop-based. A natural
question is whether there exist faster algorithms. We show that, based on the strong exponential
time hypothesis (SETH), this would be difficult.

SETH is an unproven complexity assumption that is stronger than P 6=NP. While it is unproven
and some doubt that it is true, it is nevertheless a benchmark for gauging how surprising or
noteworthy a faster algorithm would be. The reader is referred to the survey of Lokshtanov et al.
(2013) for more information about SETH. To prove our results, we use the following theorem
of Roditty and Vassilevska Williams (2013).

Theorem 1. If SETH holds, then for every ε > 0 there is no algorithm for verifying that a simple,
connected graph G = (V,E) has diam(G) = 2 that runs in time O(m2−ε).

Below, we restate and prove Proposition 2 from the main body of the paper.

Proposition 1 (restatement of Proposition 2). If SETH holds, then for every ε > 0 there exists no
algorithm for verifying that a subset D of vertices is a latency-s CDS that runs in time O(m2−ε),
even in the simplest nontrivial case of hop-based distances and s = 2.

Proof. The proof follows by reduction from the problem in Theorem 1. Namely, bidirect the edges

of the graph to get
←→
G = (V,

←→
E) and let s = 2, D = V , and we = 1 for each e ∈

←→
E . It can be

observed that D is a latency-s CDS for
←→
G if and only if G has diam(G) = 2, and this reduction

runs in linear time, so the proposition follows.

A similar negative result shows a difficulty that would be encountered when applying local
search to the minimum latency-s CDS problem. In the following proposition, we refer to the local
search move in which one is given a known-to-be-feasible solution D ⊆ V along with a vertex v ∈ D,
and the task is to determine whether one can move to D \ {v} and maintain feasibility.

1

Proposition 2. If SETH holds, then for every ε > 0 there exists no algorithm for the local search
move defined above that runs in time O(m2−ε), even in the simplest nontrivial case of hop-based
distances and s = 2.

Proof. The proof follows by reduction from the problem in Theorem 1, where we assume, without
loss, that G is not complete and thus diam(G) ≥ 2. Add a new node v to the graph G = (V,E)
and connect it to all other nodes. Call this new graph G′ = (V ′, E′), where V ′ = V ∪ {v} and

E′ = E ∪ {{u, v} | u ∈ V }. Bidirect all edges of G′ to get
←→
G ′ = (V ′,

←→
E ′). Let s = 2 and D = V ′

and we = 1 for each e ∈
←→
E ′. Since v is an in-neighbor and an out-neighbor of all other nodes in←→

G ′ and since v ∈ D, it is clear that D is a latency-s CDS for
←→
G ′. It can be observed that D \ {v}

is a latency-s CDS for
←→
G ′ if and only if G has diam(G) = 2, and this reduction runs in linear time,

so the proposition follows.

2

2 Strength of CUT vs. POLY

Figure 1 shows that POLY cannot be stronger than CUT. We were unable to prove/disprove that
CUT is stronger than POLY.

1

0

2

0

3

0.25

4

0.25

5

0.25

Figure 2: A graph with nodes numbered {1, 2, 3, 4, 5} and values for x∗ given by the nodes.
When the edges shown are treated as bidirected and unit-weighted, this vector x∗ is infeasible
for formulation CUT (for every s), since the length-s vertex cut inequality for C = {3, 4}
is violated. However, there exist values y∗ and z∗ for which (x∗, y∗, z∗) satisfies formulation
POLY when s = 3. Indeed, these values for x∗ are optimal for POLY’s LP relaxation. See
the solve logs below which we obtained via Gurobi.

9

Figure 1: A graph with nodes numbered {1, 2, 3, 4, 5} and values for x∗ given by the nodes. When the
edges shown are treated as bidirected and unit-weighted, this vector x∗ is infeasible for formulation
CUT (for every s), since the length-s vertex cut inequality for C = {3, 4} is violated. However,
there exist values y∗ and z∗ for which (x∗, y∗, z∗) satisfies formulation POLY when s = 3. Indeed,
these values for x∗ are optimal for POLY’s LP relaxation. The solve logs, obtained via Gurobi, are
below.

Optimize a model with 230 rows, 80 columns and 590 nonzeros

Coefficient statistics:

Matrix range [1e+00, 1e+00]

Objective range [1e+00, 1e+00]

Bounds range [0e+00, 0e+00]

RHS range [1e+00, 1e+00]

Presolve removed 131 rows and 45 columns

Presolve time: 0.00s

Presolved: 99 rows, 35 columns, 241 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time

0 0.0000000e+00 2.000000e+00 0.000000e+00 0s

20 5.0000000e-01 0.000000e+00 0.000000e+00 0s

Solved in 20 iterations and 0.00 seconds

Optimal objective 5.000000000e-01

X_1 = 0

X_2 = 0

X_3 = 0.25

X_4 = 0.25

X_5 = 0

Y_{1,2}^2 = 0.25

Y_{1,3}^2 = 0.25

Y_{1,4}^2 = 0.25

3

Y_{1,5}^2 = 0.5

Y_{2,1}^2 = 0.25

Y_{2,3}^2 = 0.25

Y_{2,4}^2 = 0.25

Y_{2,5}^2 = 0.5

Y_{3,1}^2 = 0.25

Y_{3,2}^2 = 0.25

Y_{3,4}^2 = 0

Y_{3,5}^2 = 0.25

Y_{4,1}^2 = 0.25

Y_{4,2}^2 = 0.25

Y_{4,3}^2 = 0

Y_{4,5}^2 = 0.25

Y_{5,1}^2 = 0.5

Y_{5,2}^2 = 0.5

Y_{5,3}^2 = 0.25

Y_{5,4}^2 = 0.25

Y_{1,2}^3 = 0

Y_{1,3}^3 = 0

Y_{1,4}^3 = 0

Y_{1,5}^3 = 0.5

Y_{2,1}^3 = 0

Y_{2,3}^3 = 0

Y_{2,4}^3 = 0

Y_{2,5}^3 = 0.5

Y_{3,1}^3 = 0

Y_{3,2}^3 = 0

Y_{3,4}^3 = 0

Y_{3,5}^3 = 0

Y_{4,1}^3 = 0

Y_{4,2}^3 = 0

Y_{4,3}^3 = 0

Y_{4,5}^3 = 0

Y_{5,1}^3 = 0.5

Y_{5,2}^3 = 0.5

Y_{5,3}^3 = 0

Y_{5,4}^3 = 0

Z_{1,2}^2 = 0

Z_{1,3}^2 = 0

Z_{1,4}^2 = 0

Z_{1,5}^2 = 0

Z_{2,1}^2 = 0

Z_{2,3}^2 = 0

Z_{2,4}^2 = 0

Z_{2,5}^2 = 0

Z_{3,1}^2 = 0.25

Z_{3,2}^2 = 0.25

Z_{3,4}^2 = 0

4

Z_{3,5}^2 = 0.25

Z_{4,1}^2 = 0.25

Z_{4,2}^2 = 0.25

Z_{4,3}^2 = 0

Z_{4,5}^2 = 0.25

Z_{5,1}^2 = 0

Z_{5,2}^2 = 0

Z_{5,3}^2 = 0

Z_{5,4}^2 = 0

3 The Importance of Strengthening the Inequalities

The following algorithm can be used to strengthen length-s vertex cut inequalities, i.e., to find
inclusion-minimal length-s vertex cuts. For our purposes, it is best described in terms of a “bad”
vertex subset B ⊆ V , i.e., one that is not a latency-s CDS for G. (If given a length-s vertex cut,
initialize the algorithm using its complement.) The algorithm takes B as input and returns an
inclusion-minimal length-s vertex cut C ⊆ V \B for G.

MinimalizeBasic(G, B, s):

1. Q← V \B;

2. for q ∈ Q do

• if B ∪ {q} is not a latency-s CDS for G then update B ← B ∪ {q};

3. return C := V \B.

Proposition 3. Algorithm MinimalizeBasic finds a minimal length-s vertex cut in time O(n4).

Proof. The runtime is dominated by the |Q| different calls to IsLatencyConstrainedCDS, which
take time O(|Q|n3) = O(n4). Since latency-s CDS’s are closed under taking supersets (as a conse-
quence of Proposition 3 of the paper), it can be argued that, in step 3, B ∪ {v} is a latency-s CDS
for every v ∈ V \B. Further, B is not. Thus, |D ∩C| ≥ 1 for every latency-s CDS D ⊆ V , and no
proper subset of C satisfies this property. So, by Lemma 1 of the paper, C is a minimal length-s
vertex cut.

The algorithm MinimalizeBasic for finding a minimal length-s vertex cut runs in time O(n4).
Here, we provide an improved O(n3) implementation. It is based on maintaining the collection F
of “far” pairs of vertices, i.e., pairs of vertices that cannot communicate quickly enough through
B ⊆ V .

First we provide pseudocode for the subroutine EnumerateFarPairs, which finds all far pairs.
It is similar to IsLatencyConstrainedCDS described earlier but requires more space, since it
requests the set F (and not just a query as to whether F is empty). Recall the subgraph of G

denoted
−→
GB

v whose edge set
−→
EB

v was defined in equation 7 of the paper. This is used to compute
shortest paths from v to all other nodes, using nodes from B as intermediaries.

5

EnumerateFarPairs(G, B, s):
1. F ← ∅;
2. for each v ∈ V do

• compute shortest paths from v in digraph
−→
GB

v ;

• for t ∈ V \ {v} do

– if dist−→
GB

v
(v, t) > s then F ← F ∪ {(v, t)};

3. return F .

Now we give an improved implementation of MinimalizeBasic. In its pseudocode, we need

notation for another subgraph of G, denoted
←−
GB

v = (V,
←−
EB

v), that is used when computing the
shortest paths from all other nodes to v, using only nodes from B as intermediaries. Its edge set←−
EB

v contains all edges that might be used in one of these paths.

←−
EB

v := E(B) ∪ δ−(B) ∪
(
δ+(B) ∩ δ−(v)

)
. (1)

Minimalize(G, B, s):
1. Q← V \B and F ←EnumerateFarPairs(G,B, s);

2. for v ∈ Q do

• compute shortest paths from v in graph
−→
GB

v ;

• compute shortest paths to v in graph
←−
GB

v ;

• R← {(a, b) ∈ F | dist←−
GB

v
(a, v) + dist−→

GB
v

(v, b) ≤ s};
• if F 6= R then update B ← B ∪ {v} and F ← F \R;

3. return C := V \B.

Here, R ⊆ F represents the subset of far pairs that would no longer be far if paths could cross
node v. If the sets R and F are the same, then this means that B ∪ {v} a latency-s CDS (which
we do not want), otherwise the algorithm adds v to B, thus moving to the larger infeasible set
B ∪ {v}—whose complement is a smaller length-s vertex cut.

Theorem 2. Algorithm Minimalize finds a minimal length-s vertex cut in time O(n3) and space
O(n2), or, more precisely, in:

• O(nm+ n2 log log n+ |Q||F0|) time and O(m+ |F0|) space under nonnegative weights;

• O(nm+ |Q||F0|) time and O(m+ |F0|) space in the hop-based case.

Here, F0 denotes the original set of far pairs, i.e., the set F from step 1.

In Table 1, we compare the performance of formulation CUT with three different settings: (1)
without minimalizing the length-s vertex cuts, (2) applying algorithm MinimalizeBasic, and (3)
applying algorithm Minimalize. In these tests, we set s = diam(G) since this is the smallest
feasible value of s. Moreover, we exclude the cases where s = diam(G) = 2, as there is nothing
to minimalize. Note that these tests use the BestInHeuristic that is described in Section 5.
CUT only solves 4 instances if we do not minimalize the length-s vertex cuts, in which case the
formulation is practically useless. Using MinimalizeBasic, we can solve 20 of the 30 instances,
but the callback time is large in many cases. For example, see the instance v200 d20 in which 37
minutes is spent in the callback. If Minimalize is used instead, the callback time reduces to 1
minute. Moreover, the time saved by Minimalize allows the solver to improve the lower bound in
5 of the 10 unsolved cases.

6

Table 1: An evaluation of the usefulness of Minimalize as compared to no minimalizing and to
MinimalizeBasic. For all graphs G, we set s = diam(G) and exclude instances where s = 2.
We report the optimal objective (or the best lower/upper bounds [L,U] after one hour) under the
columns labeled obj. We also give the time spent in the callback (call), and the total solve time
(total), where a dash indicates > 3600 seconds.

No minimalizing MinimalizeBasic Minimalize
graph s obj call total obj call total obj call total

v30 d10 8 15 10.29 280.24 15 0.00 0.01 15 0.00 0.02
v30 d20 5 8 0.01 0.05 8 0.02 0.06 8 0.00 0.03
v30 d30 3 [7,8] 229.27 - 8 0.11 0.21 8 0.02 0.10
v50 d5 14 [26,32] 49.88 - 32 0.02 0.07 32 0.02 0.07
v50 d10 5 [13,20] 31.27 - 18 0.44 0.58 18 0.08 0.18
v50 d20 3 [8,14] 51.24 - 14 0.16 0.25 14 0.03 0.11
v50 d30 3 [6,8] 45.67 - 8 1.69 2.70 8 0.16 1.12
v70 d5 8 [24,36] 14.41 - 32 1.13 1.36 32 0.32 0.53
v70 d10 4 [14,31] 19.93 - 29 3.14 5.77 29 0.44 2.98
v70 d20 3 [8,18] 19.60 - 17 47.27 335.22 17 3.40 305.96
v70 d30 3 [6,8] 66.95 - 7 9.68 12.93 7 0.50 3.33
v100 d5 5 [24,57] 9.71 - 56 16.38 33.14 56 2.10 17.91
v100 d10 4 [14,31] 10.82 - [22,26] 322.14 - [22,26] 18.79 -
v100 d20 3 [8,20] 15.26 - [14,20] 507.29 - [14,20] 24.16 -
v120 d5 6 [25,40] 8.80 - 31 464.72 1511.87 31 25.86 1087.17
v120 d10 3 [13,68] 7.92 - 63 27.31 35.60 63 2.21 10.31
v120 d20 3 [8,21] 13.89 - [10,21] 973.37 - [10,21] 42.57 -
v120 d30 3 [6,12] 19.98 - [7,12] 737.91 - [7,12] 21.65 -
v150 d5 5 [25,54] 7.19 - [29,54] 1088.47 - [30,54] 121.73 -
v150 d10 3 [13,65] 7.35 - [41,63] 717.64 - [43,61] 39.95 -
v150 d20 3 [8,22] 12.70 - [9,22] 1915.12 - [9,22] 58.24 -
v200 d5 4 [25,92] 6.10 - [48,92] 1851.87 - [49,92] 169.57 -
v200 d10 3 [13,64] 6.26 - [23,64] 1734.04 - [26,64] 132.19 -
v200 d20 3 [7,22] 7.58 - [7,22] 2226.01 - [8,22] 58.71 -

IEEE-14 5 5 0.00 0.00 5 0.00 0.00 5 0.00 0.01
IEEE-30 6 14 0.33 3.98 14 0.00 0.01 14 0.00 0.01
IEEE-57 12 [24,35] 23.24 - 35 0.02 0.05 35 0.01 0.04
RTS-96 13 [27,40] 13.53 - 37 0.09 0.17 37 0.07 0.14
IEEE-118 14 [39,48] 15.22 - 48 0.01 0.17 48 0.00 0.15
IEEE-300 24 [104,139] 16.49 - 135 14.35 18.00 135 8.65 11.98

7

4 Fractional Separation

We followed a suggestion of one of the reviewers to use fractional separation. Specifically, we
implemented the max-flow/min-cut-based procedure for s = 3, as described in the paper, and used
it as part of a branch-and-cut approach.

When experimenting with fractional separation, we felt it was important to try different imple-
mentations, as the number of cuts and the cut violation can greatly impact the performance. With
this in mind, we tried nine different implementations.

The generic pseudocode that we use in the callback is as follows, where x∗ is the branch-and-
bound node’s LP solution, ε ∈ {0.01, 0.1, 0.5} is the cut violation threshold, and I ∈ {1, 2, 3}
controls how many cuts are added per callback.

• for every vertex a ∈ {1, 2, . . . , n} do

– for every vertex b ∈ {1, 2, . . . , n} do

∗ compute a minimum-weight length-3 a,b-separator C ⊆ V \ {a, b} in graph G =
(V,E), where each vertex i has weight x∗i ;

∗ if the cut violation 1− x∗(C) is more than ε,

· add the cut x(C) ≥ 1;

· if I = 1, then return;

· if I = 2, then break the for-loop over b (i.e., go to the next a);

As can be observed in the pseudocode, setting I = 1 adds ≤ 1 cut per callback, setting I = 2
adds ≤ n cuts per callback, and setting I = 3 adds ≤ n2 cuts per callback.

There are several ways to speed up separation in practice. In all of our implementations, we
use the following speedups:

1. We can skip the cases a = b.

2. Our test instances are bidirected, so it suffices to consider b ∈ {a+ 1, a+ 2, . . . , n}.
3. If x∗(N+(a)∩N−(b)) + ε ≥ 1, then no sufficiently violated cut will exist, and one can skip to

the next vertex b.

We tried each of the three settings I ∈ {1, 2, 3} across three different values of ε ∈ {0.01, 0.1, 0.5},
resulting in a total of nine implementations. The results are provided in Tables 2, 3, 4. In each
table, we report the lower and upper bounds on the objective value after a one-hour time limit. For
reference, we also report the bounds obtained using our integer separation routine that we have
been using all along.

Among the nine fractional separation implementations, there is no clear winner. For the graph
v150 d10, the best bounds are achieved with the parameter settings (I, ε) ∈ {(1, 0.01), (3, 0.01), (3, 0.1)}.
While, for the graph v200 d20, the best bounds are achieved with a different parameter setting
(I, ε) = (1, 0.1). However, if we include our original implementation into the mix, it is the clear win-
ner. This is despite a good-faith effort towards using fractional separation, including a polynomial-
time separation routine for s = 3 and helpful speedups. We imagine that the results would be even
worse if we had to perform exact separation for s ≥ 5, where separation is NP-hard. This confirms
our suspicions that we had obtained when studying another semi-related problem (Buchanan and
Salemi, 2018).

One explanation for the poor performance of s = 3 fractional separation is the time to solve
the separation problem. It requires the solution of up to Θ(n2) different minimum cut problems,

8

making the runtime something like mn3. In contrast, our integer separation routine requires O(n3)
time. Note that for the s = 3 instance v200 d20, n3 = 8, 000, 000, while mn3 = 31, 840, 000, 000.
Any time spent on the time mn3 procedure in the callback is time not spent on other things (like
branching). Apparently, this tradeoff is not worth it.

As a final remark, see that several of our instances remain unsolved even when s = 2. Recall
that we add all length-2 vertex cut inequalities upfront in the s = 2 case since there are only
O(n2) of them, in which case there is no need to perform fractional separation. Thus, even when
fractional separation takes “zero time”, the instances cannot be solved. This lends credence to
the idea that there is little room for fractional separation to help; these instances may just be
challenging. We note that one of our s = 2 instances was submitted to MIPLIB 2017 and has
been included in their Collection Set. At the time of writing, it is still considered an “open”
instance, meaning that no MIP solver has been able to solve it (even with the latest software
releases). The instance (and its “open” status) can be found on the MIPLIB website: http:

//miplib.zib.de/instance_details_v150d30-2hopcds.html

9

http://miplib.zib.de/instance_details_v150d30-2hopcds.html
http://miplib.zib.de/instance_details_v150d30-2hopcds.html

Table 2: Lower and upper bounds after one hour when cut violation threshold is ε = 0.01
Lazy I = 1 I = 2 I = 3

graph s ≤ 1 ≤ n All Pairs

v100 d20 3 [14,20] [11,20] [10,20] [11,20]
v120 d20 3 [10,21] [8,21] [7,21] [8,21]
v120 d30 3 [7,12] [4,12] [4,12] [4,12]
v150 d10 3 [43,61] [38,65] [35,65] [38,65]
v150 d20 3 [9,22] [7,22] [7,22] [7,22]
v200 d10 3 [26,64] [27,64] [24,64] [27,64]
v200 d20 3 [8,22] [6,22] [6,22] [6,22]

Table 3: Lower and upper bounds after one hour when cut violation threshold is ε = 0.1
Lazy I = 1 I = 2 I = 3

graph s ≤ 1 ≤ n All Pairs

v100 d20 3 [14,20] [10,20] [10,20] [11,20]
v120 d20 3 [10,21] [9,21] [7,21] [8,21]
v120 d30 3 [7,12] [6,12] [4,12] [4,12]
v150 d10 3 [43,61] [28,65] [37,65] [38,65]
v150 d20 3 [9,22] [8,22] [7,22] [7,22]
v200 d10 3 [26,64] [19,64] [24,64] [26,64]
v200 d20 3 [8,22] [7,22] [6,22] [6,22]

Table 4: Lower and upper bounds after one hour when cut violation threshold is ε = 0.5
Lazy I = 1 I = 2 I = 3

graph s ≤ 1 ≤ n All Pairs

v100 d20 3 [14,20] [11,20] [9,20] [10,20]
v120 d20 3 [10,21] [8,21] [7,21] [7,21]
v120 d30 3 [7,12] [4,12] [4,12] [4,12]
v150 d10 3 [43,61] [28,65] [37,65] [36,65]
v150 d20 3 [9,22] [7,22] [6,22] [6,22]
v200 d10 3 [26,64] [20,64] [23,64] [24,64]
v200 d20 3 [8,22] [6,22] [6,22] [6,22]

10

5 The Importance of Providing a Heuristic Solution to the Solver

We provide a simple “best-in” heuristic for the minimum latency-s CDS problem. In the pseu-
docode, the vertex subset D represents a partial solution; the set F represents the set of “far
pairs,” i.e., those pairs of vertices that inhibit D from being a feasible solution; and the score of a
vertex is how many far pairs it would “close” or eliminate. Note that the scores can increase during
the heuristic, and they can all be zero while F is nonempty.

BestInHeuristic(G, s):
1. compute diam(G);

2. if diam(G) > s, return “infeasible”;

3. initialize D ← ∅ and F ← {(i, j) ∈ V × V | (i, j) /∈ E, i 6= j};
4. while F 6= ∅ do

(a) for v ∈ V \D do

• compute shortest paths from v in graph
−→
GD

v ;

• compute shortest paths to v in graph
←−
GD

v ;

• compute score(v) :=
∣∣∣{(a, b) ∈ F

∣∣∣ dist←−
GD

v
(a, v) + dist−→

GD
v

(v, b) ≤ s
}∣∣∣;

(b) let v∗ ∈ V \D be a vertex of maximum score;

(c) R←
{

(a, b) ∈ F
∣∣∣ dist←−

GD
v∗

(a, v∗) + dist−→
GD

v∗
(v∗, b) ≤ s

}
;

(d) update D ← D ∪ {v∗} and F ← F \R;

5. return D.

This heuristic returns a feasible solution (when the instance is feasible), and its runtime is
O(n4), or, more precisely, O(n3 + |D|mn+ |D||F0|n), where D is the heuristic solution at the end,
and F0 is the initial set of far pairs from step 3. Given that it takes time O(n3) to verify feasibility,
this heuristic is not too costly. The output of this heuristic is not necessarily inclusion-minimal, so
we run a post-processing procedure to make it so.

We also experimented with a “worst-out” heuristic that starts with V as an initial solution and
greedily deletes vertices v, in order of decreasing indegree |N−(v)| plus outdegree |N+(v)|, as long as
this is still feasible. This heuristic, when applied to the minimum CDS problem, is “provably best”
in the sense of Kahruman-Anderoglu et al. (2016) meaning that, unless P=NP, no polynomial-time
algorithm always finds a better solution than this heuristic (when a better solution exists). Similar
heuristics work well in practice for the minimum CDS problem (Butenko et al., 2004). However,
this particular worst-out heuristic performed poorly compared to the best-in heuristic in initial
experiments, so it is excluded.

In Table 5, we evaluate the usefulness of the proposed best-in heuristic (while employing Min-
imalize to strengthen the inequalities). In most cases, the impact of the heuristic is marginal
(positively or negatively). Of the instances that were solved to optimality, its effect is most pro-
nounced on v70 d20 and v120 d5 where it slowed down the solver by 173 seconds and sped up
the solver by 409 seconds, respectively. It may seem strange that providing an MIP start could
worsen the performance, but this is likely a natural consequence of solver variability, and we did
not attempt to tame or take advantage of this behavior. Note, however, that Gurobi was unable
to find a feasible solution on four instances if left unaided. Further, on the instances v150 d20 and
v200 d20 the best-in heuristic found solutions (in under a second) that were 12 vertices and 13
vertices better, respectively, than what Gurobi found in an hour. Frankly, Gurobi’s performance

11

on some of the s = 2 instances surprised us. For example, on the instance v120 d50, CUT has only
120 binary variables and 3570 covering constraints, and yet it did not solve within an hour.

Table 5: An evaluation of the usefulness of BestInHeuristic as compared to running Gurobi
without an MIP start. We report the objective of the heuristic solution (hobj) and the time spent
in the heuristic (htime). For the meanings of other reported quantities, refer to Table 1.

No heuristic with BestInHeuristic
graph s obj total hobj obj htime total

v30 d10 8 15 0.01 15 15 0.00 0.02
v30 d20 5 8 0.09 8 8 0.00 0.03
v30 d30 3 8 0.16 8 8 0.00 0.10
v30 d50 2 7 0.02 7 7 0.00 0.01
v30 d70 2 3 0.02 4 3 0.00 0.04

v50 d5 14 32 0.05 32 32 0.01 0.07
v50 d10 5 18 0.18 20 18 0.01 0.18
v50 d20 3 14 0.14 14 14 0.00 0.11
v50 d30 3 8 7.23 8 8 0.00 1.12
v50 d50 2 9 0.18 11 9 0.00 0.17
v50 d70 2 4 0.89 4 4 0.00 0.79

v70 d5 8 32 0.44 36 32 0.01 0.53
v70 d10 4 29 1.34 31 29 0.01 2.98
v70 d20 3 17 132.69 18 17 0.01 305.96
v70 d30 3 7 1.95 8 7 0.00 3.33
v70 d50 2 10 0.76 10 10 0.00 0.56
v70 d70 2 5 2.04 5 5 0.00 1.57

v100 d5 5 56 17.02 57 56 0.04 17.91
v100 d10 4 [22,26] - 31 [22,26] 0.02 -
v100 d20 3 [14,18] - 20 [14,20] 0.01 -
v100 d30 2 39 5.35 42 39 0.03 5.00
v100 d50 2 12 59.15 13 12 0.01 61.27
v100 d70 2 5 8.91 5 5 0.00 8.17

v120 d5 6 31 1496.49 40 31 0.05 1087.17
v120 d10 3 63 10.33 68 63 0.06 10.31
v120 d20 3 [10,26] - 21 [10,21] 0.02 -
v120 d30 3 [7,12] - 12 [7,12] 0.01 -
v120 d50 2 [11,12] - 13 [11,12] 0.01 -
v120 d70 2 5 32.86 6 5 0.00 29.67

v150 d5 5 [30,∞] - 54 [30,54] 0.10 -
v150 d10 3 [39,∞] - 65 [43,61] 0.10 -
v150 d20 3 [9,34] - 22 [9,22] 0.04 -
v150 d30 2 [35,42] - 45 [35,41] 0.06 -
v150 d50 2 [9,13] - 13 [9,13] 0.02 -
v150 d70 2 6 560.68 7 6 0.01 569.10

v200 d5 4 [46,∞] - 92 [49,92] 0.34 -
v200 d10 3 [23,∞] - 64 [26,64] 0.20 -
v200 d20 3 [7,35] - 22 [8,22] 0.07 -
v200 d30 2 [27,43] - 45 [27,44] 0.12 -
v200 d50 2 [8,15] - 16 [8,15] 0.04 -
v200 d70 2 [4,6] - 7 [4,7] 0.01 -

IEEE-14 5 5 0.00 5 5 0.00 0.01
IEEE-30 6 14 0.01 14 14 0.00 0.01
IEEE-57 12 35 0.02 35 35 0.01 0.04
RTS-96 13 37 0.15 40 37 0.02 0.14
IEEE-118 14 48 0.07 48 48 0.06 0.15
IEEE-300 24 135 8.91 139 135 2.31 11.98

12

6 Results for the Fault-Tolerant Variant

In Table 6, we provide results for the fault-tolerant variant, where r = 2, and s is set to the smallest
feasible value1 max{diam(G− v) | v ∈ V }. The reason for including results for r = 2 (and not for
larger values) is that network topologies that continue to function after the failure of a single entity
are often considered sufficient for practical purposes (Monma and Shallcross, 1989; Grötschel et al.,
1992).

The implementation needed to be modified to accommodate r = 2. For one, we needed to
alter the heuristic. Our approach is to first find a feasible solution D ⊆ V for r = 1 using the
BestInHeuristic from before. Then we consider some v ∈ D and check if D \ {v} is a latency-s
CDS. If not, then we augment it by adding high score vertices from V \D in the same way as in
BestInHeuristic until the failure of v ∈ D will not cause problems. We do this for each vertex
v ∈ D from the initial solution (for r = 1) until our heuristic solution is feasible for r = 2.

We also had to modify the callback routines. When the solver encounters a vertex subset D that
satisfies the initial constraints, we check if it is a latency-s CDS (for r = 1). If not then V \D is a
length-s vertex cut, and we strengthen it using Minimalize as before. Supposing D is a latency-s
CDS, then we check if it is a solution for r = 2, i.e., if D \ {v} is a latency-s CDS for each v ∈ D.
If not, then (V \D) ∪ {v} is a length-s vertex cut, and we use Minimalize on it.

References

Austin Buchanan and Hosseinali Salemi. Parsimonious formulations for low-diameter clusters, 2018.
http://www.optimization-online.org/DB_HTML/2017/09/6196.html.

Sergiy Butenko, Xiuzhen Cheng, Carlos A Oliveira, and Panos M Pardalos. A new heuristic for the
minimum connected dominating set problem on ad hoc wireless networks. In Recent developments
in cooperative control and optimization, pages 61–73. Springer, 2004.

Martin Grötschel, Clyde L Monma, and Mechthild Stoer. Computational results with a cutting
plane algorithm for designing communication networks with low-connectivity constraints. Oper-
ations Research, 40(2):309–330, 1992.

Sera Kahruman-Anderoglu, Austin Buchanan, Sergiy Butenko, and Oleg A. Prokopyev. On prov-
ably best construction heuristics for hard combinatorial optimization problems. Networks, 67(3):
238–245, 2016.

Daniel Lokshtanov, Dániel Marx, Saket Saurabh, et al. Lower bounds based on the exponential
time hypothesis. Bulletin of EATCS, 3(105), 2013.

Clyde L Monma and David F Shallcross. Methods for designing communications networks with
certain two-connected survivability constraints. Operations Research, 37(4):531–541, 1989.

Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the diameter
and radius of sparse graphs. In Proceedings of the forty-fifth annual ACM symposium on Theory
of computing, pages 515–524. ACM, 2013.

1If the graph has a cut vertex, we exclude it from consideration since there is no feasible (finite) value for s.

13

http://www.optimization-online.org/DB_HTML/2017/09/6196.html

Table 6: Results for the fault-tolerant variant, where r = 2 and s = max{diam(G − v) | v ∈ V }.
Only biconnected graphs are considered. The number of branch-and-bound nodes is “BB node.”

graph diam s BB node htime hobj obj total

v30 d30 3 3 462 0.00 12 12 0.09
v30 d50 2 2 0 0.01 15 14 0.02
v30 d70 2 2 0 0.00 6 5 0.02

v50 d10 5 5 239 0.12 34 32 0.33
v50 d20 3 4 432 0.03 15 13 0.25
v50 d30 3 3 10625 0.01 13 12 2.28
v50 d50 2 2 9 0.02 18 15 0.19
v50 d70 2 2 0 0.00 7 6 0.33

v70 d5 8 10 201 0.27 53 51 0.61
v70 d10 4 5 7519 0.13 33 27 4.44
v70 d20 3 3 384357 0.12 31 26 106.28
v70 d30 3 3 29771 0.02 14 12 7.30
v70 d50 2 2 174 0.03 18 16 0.56
v70 d70 2 2 163 0.01 9 7 1.77

v100 d5 5 6 134933 0.71 63 56 102.40
v100 d10 4 4 943671 0.29 48 [38,41] -
v100 d20 3 3 1260796 0.15 32 [24,27] -
v100 d30 2 3 366610 0.07 18 [11,16] -
v100 d50 2 2 21597 0.07 19 18 36.17
v100 d70 2 2 4146 0.02 10 8 14.25

v120 d5 6 7 134501 1.22 59 50 164.92
v120 d10 3 4 570958 0.56 42 [28,39] -
v120 d20 3 3 357951 0.28 32 [18,30] -
v120 d30 3 3 265467 0.08 19 [10,17] -
v120 d50 2 2 1109463 0.13 22 [16,18] -
v120 d70 2 2 6075 0.02 10 8 37.63

v150 d5 5 5 388468 2.44 80 [53,80] -
v150 d10 3 4 283107 0.49 45 [25,45] -
v150 d20 3 3 273843 0.51 36 [16,34] -
v150 d30 2 3 244025 0.20 19 [9,19] -
v150 d50 2 2 222265 0.18 22 [15,18] -
v150 d70 2 2 628745 0.04 11 [8,9] -

v200 d5 4 4 644105 12.81 128 [104,118] -
v200 d10 3 3 426782 5.56 95 [55,95] -
v200 d20 3 3 224602 0.79 32 [13,32] -
v200 d30 2 2 77784 6.57 72 [49,63] -
v200 d50 2 2 33061 0.64 25 [13,22] -
v200 d70 2 2 119071 0.07 12 [7,9] -

14

	SETH-Based Hardness Results
	Strength of CUT vs. POLY
	The Importance of Strengthening the Inequalities
	Fractional Separation
	The Importance of Providing a Heuristic Solution to the Solver
	Results for the Fault-Tolerant Variant

