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Abstract

Beginning in the 1960s, techniques from operations research began to be used to generate
political districting plans. A classical example is the integer programming model of Hess
et al. (Operations Research 13(6):998–1006, 1965). Due to the model’s compactness-seeking
objective, it tends to generate contiguous or nearly-contiguous districts, although none of the
model’s constraints explicitly impose contiguity. Consequently, Hess et al. had to manually
adjust their solutions to make them contiguous. Since then, there have been several attempts
to adjust the Hess model and other models so that contiguity is explicitly ensured. In this paper,
we review two existing models for imposing contiguity, propose two new ones, and analytically
compare them in terms of their strength and size. We conduct an extensive set of numerical
experiments to evaluate their performance. While many believe that contiguity constraints are
particularly difficult to deal with, we find that the districting problem considered by Hess et al.
does not become harder when contiguity is imposed. In fact, a branch-and-cut implementation
of a cut-based model generates, for the first time, optimally compact districting plans for 21
different US states at the census tract level. To encourage future research in this area, and for
purposes of transparency, we make our test instances and source code publicly available.

Keywords: political redistricting; contiguity; connectivity; integer programming; branch-and-cut;
Lagrangian; moment-of-inertia;

1 Introduction

In the USA, congressional redistricting occurs every 10 years, soon after the census has been taken
and the number of representatives for each state has been determined based on their populations
(a process called reapportionment). A redistricting plan, which specifies how the district lines will
be drawn within a US state, must satisfy certain constraints. Two typical constraints are that: (i)
each district must be contiguous, and (ii) each district must have the “same” population. There are
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other properties that redistricting plans must satisfy (e.g., the Voting Rights Act prohibits racial
gerrymandering) but they are often not as clear-cut as contiguity and population-equality or may
vary by state (e.g., some states require the preservation of political subdivisions like counties).

Many redistricting plans will satisfy the contiguity and population-equality constraints, allowing
redistricters to optimize a particular objective or to satisfy a set of additional constraints. This
opens the door for state legislatures (who often control redistricting) to leverage the process to their
benefit, resulting in partisan or incumbent gerrymanders. Indeed, gerrymandering has become so
contentious since the 2010 Census, that it has led to several cases before the Supreme Court of the
United States. These cases included: Lamone v. Benisek regarding Democratic gerrymandering in
Maryland, Rucho v. Common Cause regarding Republican gerrymandering in North Carolina, and
Abbott v. Perez regarding racial gerrymandering in Texas. Preliminary evidence of a gerrymander
often includes disproportionate electoral outcomes (e.g., in 2016, Republicans won 77% of North
Carolina’s congressional seats despite winning only 53% of the votes) or unusually shaped, non-
compact districts (e.g., Maryland’s 3rd congressional district, depicted in Figure 1, was drawn by the
state’s Democrats and has been compared to a “broken-winged pterodactyl, lying prostrate across
the center of the state” by a federal judge (Linskey, 2012)). However, neither a disproportionate
outcome nor an unusually shaped district is a tell-tale sign of gerrymandering (Duchin et al., 2019).
In June 2019, the Supreme Court decided that partisan gerrymandering falls outside the purview
of the federal courts, unleashing a new era of gerrymandering.

Figure 1: Maryland’s 3rd congressional district following the 2010 census. Operations researchers
might be interested to know that the INFORMS offices sit just outside of this district.

In an effort to de-politicize the redistricting process, some have suggested that “redistricting
should be a bureaucratic, boring process where you get the census data, you turn the crank, and
you get new maps for the next decade” (Boehm, 2018). Others have commented unfavorably on
automated redistricting because: (1) reasonable people can disagree about what properties the
“best” redistricting plan should satisfy, and (2) even if there were universal agreement on the
desiderata, the resulting problem would almost certainly be NP-hard (Altman and McDonald,
2010). Nevertheless, the show must go on. Some redistricting plan must be chosen, and computers
will inevitably be used in its creation, whether to provide starting points for discussion, to refine
preliminary plans, or to understand the limits of what is possible. In any case, imposing contiguity
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will be important; 23 states require contiguity by law, and the others almost always practice it
anyway (Altman, 1998; Duchin et al., 2019).

Researchers have struggled to handle the contiguity constraints inherent in redistricting prob-
lems, despite a long history. Hess et al. (1965) proposed perhaps the first optimization model for
redistricting. It sought an optimally compact redistricting plan, where compactness was measured
in terms of a moment-of-inertia objective, subject to constraints on population equality. Due to
the model’s compactness-seeking objective, it tends to generate contiguous or nearly-contiguous
districts, although none of the model’s constraints explicitly impose contiguity. Consequently, Hess
et al. manually adjusted their solutions to make them contiguous.

Since then, there have been several attempts to adjust the Hess model (or others similar to it)
so that contiguity is explicitly ensured (Zoltners and Sinha, 1983; Drexl and Haase, 1999; Caro
et al., 2004; Shirabe, 2009; Duque et al., 2011; Oehrlein and Haunert, 2017; Kim and Xiao, 2017).
Nevertheless, researchers have remained pessimistic.

• “[Contiguity] constraints make [districting] much more difficult than other partitioning prob-
lems in combinatorial optimization, such as coloring or frequency assignment.” (Ricca and
Simeone, 2008)

• “[Contiguity] is particularly difficult to deal with and, sometimes, it is even discarded from
[political districting] models and considered only a posteriori.” (Ricca et al., 2013)

• “Ensuring contiguity efficiently seems to be an issue in exact methods [for political district-
ing].” (Goderbauer and Winandy, 2018)

• “For exact methods, contiguity enforcement has been a major challenge.” (Swamy et al.,
2019b)

With this in mind, this paper studies how to best impose contiguity in the context of the Hess
model. We consider the following models:

1. SHIR, a flow-based model credited to Shirabe (2005, 2009) and detailed by Oehrlein and
Haunert (2017);

2. CUT, a cut-based model proposed by Oehrlein and Haunert (2017) that draws from Carvajal
et al. (2013) and others;

3. MCF, a new flow-based model that we show is equivalent in strength to CUT and stronger
than SHIR at the cost of having more variables;

4. LCUT, a new cut-based model that is shown to be stronger than the other models.

We also examine the separation problems associated with the CUT and LCUT models; the former
is shown to be solvable in time O(n2 log3 n), whereas the procedure used by Oehrlein and Haunert
(2017) takes time O(n4). Here, n is the number of vertices in a graph associated with the instance.

To evaluate the performance of the four models, we conduct a thorough set of computational
experiments, testing the four models on redistricting instances for every US state at the county and
census tract levels. In a nod to Hess et al. (1965), we use the original moment-of-inertia objective
function in our experiments. We find that the new LCUT model is the best-performing formulation
on the county-level instances where the problem has more of a combinatorial flavor. On the tract-
level instances, which have significantly more granularity, CUT and LCUT perform nearly the same
and solve 21 instances to optimality.
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The largest instance that CUT solves is for Indiana. This instance has 1, 511 census tracts
and uses (1, 511)2 = 2, 283, 121 binary variables. To our knowledge, this is significantly larger
than any districting instance ever solved in the literature by an exact method—with or without
contiguity constraints. For example, Mehrotra et al. (1998) use branch-and-price for South Carolina,
essentially at the county level, having approximately 50 vertices and 6 districts. Several of their steps
were not automated, including the splitting and joining of several counties pre-solve, and manual
adjustments post-solve for population-equality, and were ultimately unable to guarantee optimality.
A more recent paper by Swamy et al. (2019b) heuristically reduces the sizes of instances by a series
of graph contractions until n ≤ 200 (n2 ≤ 40, 000) at which point they are able to deploy their
exact method. They motivate this graph contraction procedure by noting that Wisconsin has 1, 409
tracts and by pointing out the enormous size of the resulting MIP. This instance can also be solved
with our techniques if Hess et al.’s original objective function is used.

To encourage future research in this area, and for purposes of transparency, we make our test
instances, C++ source code, and redistricting plans (maps and block equivalency files) available
at https://github.com/zhelih/districting. The source code is released under a GNU General
Public License, which gives users the ability to run, study, share, and modify it.

2 Background and Literature Review

In this section, we give a brief overview of redistricting, particularly congressional redistricting for
the US, and approaches for constructing redistricting plans. The literature on these topics is vast,
and we can only cover the highlights. Interested readers are encouraged to refer to Di Cortona
et al. (1999); Murphy et al. (2013); Ricca et al. (2013), and Goderbauer and Winandy (2018) for
perspectives on redistricting from operations researchers, as well as Grofman (1985); Arrington
(2010), and Bullock III (2010) for perspectives from social scientists.

2.1 Redistricting principles and laws in the US

A redistricting plan must satisfy certain state and federal laws. These laws are often crafted to
ensure that traditional redistricting principles are followed (e.g., population-equality, contiguity,
compactness, preservation of political subdivisions and communities of interest) or that the dis-
tricting process does not disadvantage a particular group (e.g., a racial minority or members of a
political party). Below we mention some examples of redistricting laws in the US. Our intent is to
provide some context for the stylized redistricting problem that we will consider in this paper, while
also recognizing that the districting plans from our computational experiments will not consider all
of these redistricting principles or laws (which also vary by state).

Population balance. Federal laws in the US require that congressional districts within a state
all have the “same” population. This one-person, one-vote principle was formally interpreted by
the Supreme Court to be a consequence of Article I, Section 2 of the US Constitution in the 1964
case Reynolds v. Sims. In the decades following Reynolds, the courts established tighter and tighter
restrictions on how much population deviation is allowed. There is currently no threshold for
population deviation beyond which a districting plan will necessarily be deemed legal (i.e., a “safe
harbor”), and a population deviation of just 19 people (0.0029%!) was ruled unconstitutional in 2002
by a federal district court in Pennsylvania (Hebert et al., 2010). Nevertheless, larger population
deviations of up to 1% have been allowed if there is a compelling justification, such as the desire
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to satisfy a traditional redistricting principle. For example, West Virginia kept all of its counties
intact at the price of a 0.79% population deviation (NCSL, 2019).

Race. Federal law also dictates what role race should (or should not) play in redistricting. For
example, Section 2 of the Voting Rights Act (VRA) prohibits racial gerrymandering, disallowing
any practice or procedure that inhibits a protected minority group from electing candidates of their
choice. In the 1986 case Thornburg v. Gingles, the Supreme Court established when states must
create “majority-minority” or minority-opportunity districts with the three-pronged Gingles test,
the first prong of which requires that the minority group be sufficiently numerous and geographically
compact. There are also constitutional limits on racial gerrymandering. For example, in the
1993 case Shaw v. Reno, the Supreme Court established that the Equal Protection Clause of the
14th Amendment prohibits states from the excessive or unjustified use of race when redistricting,
especially if race predominates the map-making process to the exclusion of traditional redistricting
principles (Hebert et al., 2010).

State laws (e.g., contiguity). States also enact laws regarding congressional redistricting. For
example, contiguity is not federally required, so 23 states have imposed this requirement themselves;
the other states almost always enact contiguous districts anyway (Duchin et al., 2019). States such
as Iowa have additional laws regarding compactness, the preservation of political subdivisions, and
the non-use of partisan data (NCSL, 2019).

2.2 Algorithms and models for redistricting

Any practical variant of redistricting is NP-hard (Altman, 1997), leading many researchers to
propose their own heuristics (Ricca et al., 2013). A non-exhaustive list of examples include greedy
construction heuristics (Vickrey, 1961; Kim, 2019), local search heuristics (King et al., 2012, 2015,
2018), metaheuristics like simulated annealing and tabu search (Bozkaya et al., 2003; Ricca and
Simeone, 2008; Altman et al., 2011; Guo and Jin, 2011; Liu et al., 2016; Olson, 2019; Gutiérrez-
Andrade et al., 2019), and generalizations of Voronoi diagrams (Miller, 2007; Svec et al., 2007; Ricca
et al., 2008; Cohen-Addad et al., 2018; Levin and Friedler, 2019).

Recently, several researchers propose Markov chain Monte Carlo (MCMC) methods for gen-
erating large collections of redistricting plans, where the aim is understand the distribution of
redistricting plans, which can provide a baseline with which to compare proposed or implemented
plans (Fifield et al., 2015; Cho and Liu, 2018; Adler and Wang, 2019; DeFord et al., 2019). If a
proposed redistricting plan is an outlier (say, with respect to seat share distribution), this might
suggest an intent to gerrymander. MCMC sampling methods for redistricting are quite similar to
local search in that they move from one feasible solution to a neighboring feasible solution.

The literature also contains many exact methods for redistricting, including numerous IP for-
mulations (Ricca et al., 2013). Perhaps the two most notable are what we will call the Hess model
and the set partition model.

The Hess model, detailed in Section 2.4, is a constrained k-median model. Its essence can be
found in numerous papers on redistricting in the OR literature (Hess et al., 1965; Hojati, 1996;
Gentry et al., 2015). The most popular technique for imposing contiguity in the context of the Hess
model is a flow-based formulation credited to Shirabe (2005, 2009), cf. Oehrlein and Haunert (2017).
This formulation, which is detailed in Section 3.1, is easy to implement and has been used in one
form or another in several papers (Duque et al., 2011; Gopalan et al., 2013; Haase and Müller, 2014;
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Oehrlein and Haunert, 2017; Kong et al., 2019; Swamy et al., 2019b). Another notable approach
for imposing contiguity uses graph cuts. Specifically, Oehrlein and Haunert (2017) propose to use
a, b-separator inequalities for redistricting (detailed in Section 3.3); others have proposed related
inequalities that are weaker (Drexl and Haase, 1999) or not valid (Zoltners and Sinha, 1983).

In the set partition model, there is a binary variable for each possible district, and the task
is to select k of them such that every part of the state is covered exactly once. The approaches
of Garfinkel and Nemhauser (1970) and Mehrotra et al. (1998) are based on formulations of this
type. It should be noted that, in general, the set of possible districts grows exponentially, meaning
that formulations of this type are solved either using a select subset of district variables or the
variables are introduced on-the-fly via column generation. Contiguity is handled during pricing.

2.3 Notation and problem definition

When trying to impose the contiguity constraints involved in political districting, it is helpful to
use the so-called contiguity graph (Ricca et al., 2013), also known as the adjacency graph or dual
graph. In this graph G = (V,E), each vertex v ∈ V represents a contiguous parcel of land (e.g.,
a county or census tract), and there is an edge {u, v} ∈ E connecting vertices u and v when the
corresponding land parcels share a border of nonzero length (e.g., it is not enough to meet at a
point). By this construction, G will be simple and planar, and thus sparse. Indeed, its number of
edges m := |E| is linear with respect to the number of vertices n := |V |; Euler’s polyhedral formula
implies that m ≤ 3n − 6 when n ≥ 3. (Note: in our experiments, we will come across a handful
of cases where a land parcel consists of multiple disconnected pieces, e.g., a few lakes that form a
single census tract, which can result in a non-planar contiguity graph; however, all of the instances
in our experiments will nevertheless be sparse and satisfy m ≤ 3n− 6.) The (open) neighborhood
of vertex i is denoted by N(i) := {j ∈ V | {i, j} ∈ E}, and the closed neighborhood is denoted by
N [i] := N(i) ∪ {i}. Other necessary data includes:

• the number k of districts to be created;

• the population pv of each land parcel v ∈ V ;

• the minimum and maximum population (L and U) allowed in a district.

Another piece of data that might be used to construct a “compact” districting plan is the distance
dij between (the centers of) land parcels i and j. Indeed, these distances appear in the compactness-
seeking objective function in the model of Hess et al. (1965).

For the purposes of this paper, the districting problem is defined as follows. If any exist, find a
partition of the vertex set V into districts such that:

1. each vertex belongs to exactly one district;

2. there are k districts;

3. each district V ′ satisfies the population bounds, i.e., L ≤
∑

i∈V ′ pi ≤ U ;

4. each district V ′ is contiguous, i.e., G[V ′] is connected.

We call these four constraints the bright-line rules, and any districting plan that satisfies them is
said to be feasible. If there are multiple feasible solutions, the task is to find one that is most
compact with respect to the penalties w, which are discussed next.
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2.4 The Hess model

Hess et al. (1965) introduced the classical integer program for political districting, which uses the
following n2 binary variables.

xij =

{
1 if vertex i is assigned to (the district centered at) vertex j
0 otherwise.

The Hess formulation is as follows, where wij is a penalty charged for assigning i to j.

min
∑
i∈V

∑
j∈V

wijxij (1a)

∑
j∈V

xij = 1 ∀i ∈ V (1b)

∑
j∈V

xjj = k (1c)

Lxjj ≤
∑
i∈V

pixij ≤ Uxjj ∀j ∈ V (1d)

xij ≤ xjj ∀i, j ∈ V (1e)

xij ∈ {0, 1} ∀i, j ∈ V. (1f)

Constraints (1b) ensure that each vertex is assigned to a district. Constraint (1c) ensures that k
districts are chosen. Constraints (1d) ensure that the population of each district lies between L and
U . Constraints (1e) were not originally included by Hess et al. (1965) but are usually added for
strength (Ricca et al., 2013). In our code, we also introduce a new variable to replace the expression∑

i∈V pixij in constraints (1d), thus reducing the formulation’s size in computer memory by 20%.
Hess et al. (1965) considered a moment-of-inertia objective, defining the penalties wij as follows.

(penalty for moment-of-inertia objective) wij := pid
2
ij .

Meanwhile, the traditional objective used in facility location would capture the total number of
miles traveled if the state’s inhabitants were to drive to their district centers with the penalties
wij := pidij , where d is set using road distances (Daskin and Tucker, 2018). Duchin (2018) has
humorously described this measure of compactness as an “appealing one, particularly if you imagine
replacing distance with travel time” because you can think of it as answering the question: “How
long does it take you to go yell at your representative?” Another objective that has been considered
by Hojati (1996) and Gopalan et al. (2013) uses squared Euclidean distances wij := d2ij . Others
such as Swamy et al. (2019a) and Mehrotra et al. (1998) use the simpler penalty wij := dij . In
fact, Mehrotra et al. (1998) take dij as the hop-based distance between i and j in the contiguity
graph. In a nod to Hess et al. (1965), we use the original moment-of-inertia objective in our
experiments; however, our analysis and techniques apply regardless of which penalties are used.
For more information about the many measures of compactness in the literature, we refer the
reader to the compactness critiques of Young (1988) and the classification by Niemi et al. (1990).

The Hess model is the foundation of our proposed formulations. The feasible region of its LP
relaxation, which we denote by PHESS, is defined as follows.

PHESS :=
{
x ∈ Rn×n

+

∣∣ x satisfies constraints (1b), (1c), (1d), (1e)
}
.

Note that the bounds xij ≤ 1 are implied by nonnegativity and the assignment constraints (1b).
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3 Contiguity Models

Here, we consider four different models for imposing contiguity in the context of the Hess model:
SHIR, CUT, MCF, and LCUT. Two of them have appeared in the previous literature (SHIR and
CUT), while two others are new (MCF and LCUT). The flow-based models SHIR and MCF refer
to the “bidirected” version of the contiguity graph which we denote by D = (V,A). This directed
graph D is obtained from G = (V,E) by replacing each undirected edge {i, j} ∈ E by its directed
counterparts (i, j) and (j, i). Thus, |A| = 2|E|. The set of edges pointing away from vertex i is
denoted by δ+(i), and the set of edges pointing towards vertex j is denoted by δ−(j).

3.1 SHIR

Oehrlein and Haunert (2017) propose a flow-based formulation, adapted from Shirabe (2009). We
provide (essentially) the same formulation below and call it SHIR. This formulation uses the fol-
lowing flow variables.

fvij = the amount of flow, originating at district center v, that is sent across edge (i, j).

The SHIR formulation is as follows, where f j(S) for S ⊆ A is shorthand for
∑

(u,v)∈S f
j
uv.

x ∈ PHESS (2a)

f j(δ−(i))− f j(δ+(i)) = xij ∀i ∈ V \ {j}, ∀j ∈ V (2b)

f j(δ−(i)) ≤ (n− 1)xij ∀i ∈ V \ {j}, ∀j ∈ V (2c)

f j(δ−(j)) = 0 ∀j ∈ V (2d)

fvij ≥ 0 ∀(i, j) ∈ A, ∀v ∈ V (2e)

xij ∈ {0, 1} ∀i, j ∈ V. (2f)

Constraints (2b) ensure that if vertex i is assigned to center j, then i consumes one unit of flow of
type j; otherwise, it consumes none. Constraints (2c) ensure that vertex i can receive flow of type
j only if i is assigned to center j. Constraints (2d) prevent flow circulations.

Now, we define the polytope PSHIR as follows.

PSHIR :=
{

(x, f) ∈ Rn×n × R2mn
∣∣ (x, f) satisfies constraints (2a)− (2e)

}
.

Remark 1. The following equations are implied in PSHIR.

f j(δ+(j)) =
∑

i∈V \{j}

xij ∀j ∈ V. (3)

Proof. Consider a point (x̂, f̂) that belongs to PSHIR. Then, for every vertex j ∈ V ,

f̂ j(δ+(j)) = f̂ j(δ+(j))− f̂ j(δ−(j)) (4a)

= f̂ j(δ+(j))− f̂ j(δ−(j))−
∑
i∈V

(
f̂ j(δ+(i))− f̂ j(δ−(i))

)
(4b)

= −
∑

i∈V \{j}

(
f̂ j(δ+(i))− f̂ j(δ−(i))

)
(4c)

=
∑

i∈V \{j}

(
f̂ j(δ−(i))− f̂ j(δ+(i))

)
=

∑
i∈V \{j}

x̂ij . (4d)
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Here, equation (4a) holds by constraints (2d), equation (4b) holds because the flow variables in the
summation cancel each other, and equation (4d) holds by constraints (2b).

3.2 MCF

The SHIR formulation uses “big-M” constraints (2c), which can result in a weak linear programming
relaxation. With this in mind, we propose a different flow-based formulation which avoids the big-M
constraints via a different variable definition.

fabij =

{
1 if edge (i, j) ∈ A is on the path to vertex a from its district’s center b
0 otherwise.

The resulting MCF formulation, which can be viewed as a disaggregation of SHIR, is as follows,
where fab(S) for S ⊆ A is shorthand for

∑
(u,v)∈S f

ab
uv.

x ∈ PHESS (5a)

fab(δ+(b))− fab(δ−(b)) = xab ∀a ∈ V \ {b}, ∀b ∈ V (5b)

fab(δ+(i))− fab(δ−(i)) = 0 ∀i ∈ V \ {a, b}, ∀a ∈ V \ {b}, ∀b ∈ V (5c)

fab(δ−(b)) = 0 ∀a ∈ V \ {b}, ∀b ∈ V (5d)

fab(δ−(j)) ≤ xjb ∀j ∈ V \ {b}, ∀a ∈ V \ {b}, ∀b ∈ V (5e)

fabij ≥ 0 ∀(i, j) ∈ A, ∀a ∈ V \ {b}, ∀b ∈ V (5f)

xij ∈ {0, 1} ∀i, j ∈ V. (5g)

Constraints (5b) ensure that if vertex a is assigned to center b, then b sends out a unit of flow of
type ab, which ultimately must be consumed by a because of the flow conservation constraints (5c)
at other vertices. Constraints (5d) prevent flow circulations. Constraints (5e) ensure that vertex j
can receive a flow of type ab only if j is assigned to center b.

To our knowledge, this formulation is new in the context of districting. Now, we define the
polytope PMCF as follows.

PMCF :=
{

(x, f) ∈ Rn×n × R2mn(n−1)
∣∣∣ (x, f) satisfies constraints (5a)− (5f)

}
.

Note that the bounds fabij ≤ 1 are implied in PMCF by nonnegativity and constraints (5e).

Remark 2. The following equations are implied in PMCF.

fab(δ+(a))− fab(δ−(a)) = −xab ∀a ∈ V \ {b}, ∀b ∈ V (6a)

fab(δ+(a)) = 0 ∀a ∈ V \ {b}, ∀b ∈ V. (6b)

Proof. Consider a point (x̂, f̂) that belongs to PMCF. For distinct vertices a, b ∈ V ,

f̂ab(δ+(a))− f̂ab(δ−(a)) = f̂ab(δ+(a))− f̂ab(δ−(a))−
∑
j∈V

(
f̂ab(δ+(j))− f̂ab(δ−(j))

)
(7a)

= −
∑

j∈V \{a}

(
f̂ab(δ+(j))− f̂ab(δ−(j))

)
(7b)

= −
(
f̂ab(δ+(b))− f̂ab(δ−(b))

)
= −x̂ab. (7c)
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Here, equation (7a) holds because the flow variables in the summation cancel each other. The first
equation in line (7c) holds by constraints (5c) and the second holds by constraints (5b). So, the

point (x̂, f̂) satisfies the equations (6a). Further,

0 ≤ f̂ab(δ+(a)) = −x̂ab + f̂ab(δ−(a)) ≤ −x̂ab + x̂ab = 0.

Here, the first equation holds by the implied equations (6a), and the last inequality holds by
constraints (5e). Thus, the equations (6b) are implied in PMCF.

3.3 CUT

The CUT formulation, which was first used for districting by Oehrlein and Haunert (2017), is based
on the concept of a, b-separators, see also Carvajal et al. (2013); Buchanan et al. (2015); Ahn and
Park (2015); Fischetti et al. (2017); Wang et al. (2017). An example is given in Figure 2.

Definition 1 (a, b-separator). A subset C ⊆ V \ {a, b} of vertices is called an a, b-separator for
G = (V,E) if there is no path from a to b in G− C.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure 2: An example of an a, b-separator, where a = 6 and b = 10 and C = {3, 8, 13, 18, 23}.

The resulting a, b-separator inequalities (8b) are written for every ordered pair (a, b) of nonadja-
cent vertices and every a, b-separator C, which we denote by the shorthand ∀(a, b, C). As is usual,
it is sufficient to consider minimal a, b-separators, where minimality is taken by inclusion.

x ∈ PHESS (8a)

xab ≤
∑
c∈C

xcb ∀(a, b, C) (8b)

xij ∈ {0, 1} ∀i, j ∈ V. (8c)

Constraints (8b) ensure that if vertex a is assigned to center b then at least one vertex from every
a, b-separator C is assigned to b. The inequality associated with the a, b-separator from Figure 2 is
x6,10 ≤ x3,10 + x8,10 + x13,10 + x18,10 + x23,10.

Now, we define the polytope PCUT as follows.

PCUT :=
{
x ∈ Rn×n ∣∣ x satisfies constraints (8a)− (8b)

}
.
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3.4 LCUT

The a, b-separator inequalities (8b) use the fact that the vertices assigned to vertex b are required
to induce a connected subgraph. By exploiting additional information (e.g., that the population
bound U must also be satisfied), we can write stronger inequalities.

We formalize this using the concept of a length-U a, b-separator. To do this, we need to refer
to vertex-weighted distances, where the weight of a vertex i is its population pi. The distance
distG,p(a, b) from a to b is the length

∑
v∈V (P ) pv of a shortest vertex-weighted path P from a to b,

where V (P ) denotes the set of vertices on path P . An example is given in Figure 3.

Definition 2 (length-U a, b-separator). A subset C ⊆ V \ {a, b} of vertices is called a length-U
a, b-separator in G = (V,E), with respect to vertex weights p, if distG−C,p(a, b) > U .

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure 3: An example of a length-U a, b-separator, when p = 1 and U = 5, where a = 6 and b = 10
and C = {8}.

With this definition, we can write inequalities having the exact same form as the a, b-separator
inequalities (8b), except that C will now be a length-U a, b-separator. We write these inequalities
for every ordered pair (a, b) of distinct (possibly adjacent) vertices and every (minimal) length-U
a, b-separator C, which we again denote by the shorthand ∀(a, b, C).

x ∈ PHESS (9a)

xab ≤
∑
c∈C

xcb ∀(a, b, C) (9b)

xij ∈ {0, 1} ∀i, j ∈ V. (9c)

Constraints (9b) ensure that if vertex a is assigned to center b then at least one vertex from every
length-U a, b-separator C is assigned to b. The inequality associated with the length-U a, b-separator
from Figure 3 is x6,10 ≤ x8,10.

Similar length-bounded cut models have been proposed recently for other problems (Salemi and
Buchanan, 2019; Validi and Buchanan, 2019b; Arslan et al., 2019b,a).

Remark 3. If distG,p(a, b) > U , then C = ∅ is a length-U a, b-separator and xab ≤ 0 is the
associated length-U a, b-separator inequality.

Now, we define polytope PLCUT as follows.

PLCUT :=
{
x ∈ Rn×n ∣∣ x satisfies constraints (9a)− (9b)

}
.
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4 Analysis of the Formulations

We now compare the strength of the four formulations, prove their correctness, and analyze the
separation problems associated with the exponentially-sized models CUT and LCUT.

4.1 Formulation strength

The main result of this subsection is the following theorem. A specific result is that the newly
proposed LCUT formulation is the strongest formulation in this paper.

Theorem 1. For every instance of districting,

PLCUT ⊆ PCUT = projx PMCF ⊆ projx PSHIR,

and there exist instances for which the inclusions are strict.

Proof. This follows by Lemmata 1, 2, and 3, which are proven below.

Lemma 1. For every instance of districting, PLCUT ⊆ PCUT, and this inclusion can be strict.

Proof. Since a, b-separator inequalities are length-U a, b-separator inequalities for every U , the
inclusion PLCUT ⊆ PCUT holds. Figure 4 gives an example where PLCUT 6= PCUT. So, the inclusion
can be strict.

5

x̂55 = 0.4
x̂52 = 0.1
x̂53 = 0.1
x̂54 = 0.4

2 x̂22 = 0.6
x̂23 = 0.4

4
x̂44 = 0.4
x̂43 = 0.2
x̂45 = 0.4

3 x̂33 = 0.6
x̂34 = 0.4

1

x̂12 = 0.5
x̂13 = 0.5

Figure 4: An example showing PLCUT 6= PCUT. Here, L = k = 2, U = 3 and p = 1. While the
point x̂ belongs to PCUT, it does not belong to PLCUT because it violates the length-3 1, 3-separator
inequality (9b) for a = 1, b = 3, and C = {2}.

Lemma 2. For every instance of districting, PCUT = projx PMCF.

Proof. (⊇) Suppose that (x̂, f̂) belongs to PMCF. To show that x̂ belongs to PCUT, it suffices to
show that x̂ satisfies constraints (8b) for an arbitrary pair of nonadjacent vertices a, b ∈ V and
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a,b-separator C ⊆ V \ {a, b}. Let B the set of vertices reachable from b in the graph G−C. Then,

x̂ab = f̂ab(δ+(b))− f̂ab(δ−(b)) (10a)

= f̂ab(δ+(B))− f̂ab(δ−(B)) (10b)

≤ f̂ab(δ+(B)) (10c)

≤ f̂ab(δ−(C)) (10d)

≤
∑
j∈C

f̂ab(δ−(j)) (10e)

≤
∑
j∈C

x̂jb. (10f)

Here, equation (10a) holds by constraints (5b), equation (10b) holds by constraints (5c), and in-

equalities (10c)–(10e) hold by nonnegativity of f̂ . Finally, inequality (10f) holds by constraints (5e).

(⊆) Suppose that x̂ belongs to PCUT. For every pair of distinct vertices a, b ∈ V , we define f̂ab

as follows. If vertices a and b are adjacent, then define f̂abba := x̂ab and f̂abij := 0 for all other arcs
(i, j) ∈ A \ {(b, a)}. If a and b are nonadjacent, consider the following maximum b-a flow problem
in which the fixed x̂jb values are used as vertex capacities.

max fab(δ+(b)) (11a)

fab(δ+(i))− fab(δ−(i)) = 0 ∀i ∈ V \ {a, b} (11b)

fab(δ−(b)) = 0 (11c)

fab(δ−(j)) ≤ x̂jb ∀j ∈ V \ {b} (11d)

fabij ≥ 0 ∀(i, j) ∈ A. (11e)

This problem is feasible (by the zero flow), and its objective is at most one because the sink a has

capacity x̂ab by (11d). Let f̂abij for (i, j) ∈ A be an optimal solution to this flow problem.

Now we are to show that (x̂, f̂) satisfies constraints (5b)–(5f). They are easily satisfied when the

constraint quantifiers a and b are adjacent, by the simple definition of f̂ab in this case. When the
constraint quantifiers a and b are nonadjacent, constraints (5c)–(5f) hold by the constraints defining

the flow problem. So it remains to show that (x̂, f̂) satisfies constraints (5b) for nonadjacent vertices
a and b. By classical results of Ford Jr and Fulkerson (1962) (see section 1.11 on vertex capacities),

the flow value f̂ab(δ+(b)) is equal to the weight
∑

j∈C x̂jb of a minimum-weight b, a-separator C,
where vertex j has weight x̂jb. Then,

x̂ab ≤
∑
j∈C

x̂jb = f̂ab(δ+(b)) = f̂ab(δ−(a)) ≤ x̂ab.

Here, the first inequality holds by assumption that x̂ satisfies constraints (8b), and the last inequality

holds by the capacity of vertex a in the flow problem (11d). Then, because f̂ab(δ−(b)) = 0 by the

flow problem (11c), the constraint f̂ab(δ+(b))− f̂ab(δ−(b)) = x̂ab holds.

Lemma 3. For every instance of districting, projx PMCF ⊆ projx PSHIR, and this can be strict.

13



Proof. To prove projx PMCF ⊆ projx PSHIR, consider a point (x̄, f̂) that belongs to PMCF. We
construct f̄ such that (x̄, f̄) belongs to PSHIR. For every vertex b ∈ V and every edge (i, j) ∈ A, let

f̄ bij :=
∑

a∈V \{b}

f̂abij .

To show that (x̄, f̄) satisfies constraints (2b), consider distinct vertices i, b ∈ V . Then,

f̄ b(δ−(i))− f̄ b(δ+(i)) =
∑

a∈V \{b}

f̂ab(δ−(i))−
∑

a∈V \{b}

f̂ab(δ+(i)) (12a)

=
∑

a∈V \{b,i}

(
f̂ab(δ−(i))− f̂ab(δ+(i))

)
+ f̂ ib(δ−(i))− f̂ ib(δ+(i)) (12b)

= 0 + f̂ ib(δ−(i))− f̂ ib(δ+(i)) = x̄ib. (12c)

Here, equation (12a) holds by the definition of f̄ , and equations (12c) holds by constraints (5c)
and (6a).

To show that (x̄, f̄) satisfies constraints (2c), consider distinct vertices i, b ∈ V . Then,

f̄ b(δ−(i)) =
∑

a∈V \{b}

f̂ab(δ−(i)) ≤
∑

a∈V \{b}

x̄ib = (n− 1)x̄ib.

Here, the first equation holds by the definition of f̄ , and the inequality holds by constraints (5e).
To show that (x̄, f̄) satisfies constraints (2d), consider a vertex j ∈ V . Then,

f̄ j(δ−(j)) =
∑

i∈V \{j}

f̂ ij(δ−(j)) = 0.

Here, the first equation holds by the definition of f̄ , and the second holds by constraints (5d).
Figure 5 gives an example where PCUT 6= projx PSHIR. Since PCUT = projx PMCF by Lemma 2,

this shows that the inclusion projx PMCF ⊆ projx PSHIR can be strict.

4.2 Formulation correctness

Here we consider the correctness of the formulations. By this, we mean that they allow precisely
those plans that satisfy the four bright-line rules. To our knowledge, no previous work has explicitly
proven the correctness of the SHIR and CUT formulations. While their correctness is not surprising,
we feel that this step is critical to safeguard against seemingly innocuous formulations, see Validi
and Buchanan (2019a). Appendix A provides a proof.

Theorem 2. Formulations SHIR, MCF, CUT, and LCUT are correct.

4.3 The separation problems

Since the models CUT and LCUT have exponentially many constraints, it is important to study
the associated separation problems so that inequalities can be added to the model on-the-fly as
needed, instead of all up front which would render the models useless. This problem asks: given
x∗, is there an inequality from the model that x∗ violates? We show that this can be solved in
time O(n2 log3 n) for CUT, which is significantly faster than what was previously published: O(n4)
by Oehrlein and Haunert (2017). We then show that the separation problem for LCUT is NP-hard.
However, we show that both separation problems can be solved in time O(n2) when x∗ is integer.
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1
x̂11 = 0.5
x̂12 = 0.3
x̂13 = 0.2

2
x̂22 = 0.5
x̂21 = 0.3
x̂24 = 0.2

3

x̂33 = 0.5
x̂32 = 0.2
x̂34 = 0.3

4

x̂44 = 0.5
x̂41 = 0.2
x̂43 = 0.3

f̂3
31 = 0.5

f̂2
31 = 0.3

f̂1
14 = 0.5

f̂3
14 = 0.3

f̂2
23 = 0.5

f̂4
23 = 0.3

f̂1
42 = 0.3

f̂4
42 = 0.5

Figure 5: An example showing projx PSHIR 6= PCUT. Here, L = U = k = 2 and p = 1. While

the point (x̂, f̂) belongs to PSHIR, x̂ does not belong to PCUT because it violates the a, b-separator
inequality (8b) for a = 1, b = 2, and C = {3, 4}.

4.3.1 Fractional separation for CUT

Oehrlein and Haunert propose to solve the separation problem for inequalities (8b) as follows, when
given a (fractional) point x̂. For every pair (a, b) of nonadjacent vertices, solve a minimum-weight
a, b-separator problem in graph G, where vertex i has weight x̂ib. If this weight is less than x̂ab,
then an inequality (8b) is violated. The minimum-weight a, b-separator problem is solved in the
usual way, by a node-splitting transformation to a minimum cut problem. This procedure runs in
time O(mn) = O(n2) for a particular (a, b) pair, and in time O(n4) overall.

Proposition 1 (Oehrlein and Haunert (2017)). The separation problem for constraints (8b) can
be solved in time O(n4).

We note that, if D is planar, the separation problem can be solved significantly faster. Namely,
when given a fractional point x̂, do the following for each b ∈ V . Start with graph D and let each
vertex v have capacity x̂vb. Apply the linear-time reduction of Kaplan and Nussbaum (2011) to
convert vertex capacities to edge capacities (while preserving planarity). Then, apply the algorithm
of Lacki et al. (2012) to find the max b, v-flow value (for all v) in time O(n log3 n). This will tell us
the value of a minimum-weight v, b-separator for all vertices v. Compare these flow values to x̂vb
to see if any inequalities (8b) are violated. Pick the most-violated one of them, say v = a, if any
exist. Then apply the algorithm of Kaplan and Nussbaum (2011) to compute a max b, a-flow, and
from it find the associated separator C ⊆ V \ {a, b}.

Lemma 4. The separation problem for constraints (8b) for fixed b ∈ V can be solved in time
O(n log3 n) when the contiguity graph is simple and planar.
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Applying Lemma 4 for each vertex b ∈ V gives the following proposition. We find this result
quite striking given that there are n2 variables.

Proposition 2. The separation problem for constraints (8b) can be solved in time O(n2 log3 n)
when the contiguity graph is simple and planar.

Note that, in some rare cases, the contiguity graph may not be planar. This is possible if the
land parcels that are represented by the contiguity graph’s vertices are themselves not contiguous
(e.g., a census tract comprised of multiple lakes). In such situations, one may need to represent
each part with its own vertex before applying the separation routines referenced here.

4.3.2 Fractional separation for LCUT

We show that the separation problem for LCUT is NP-hard. Hardness persists for outerplanar
graphs, which are planar graphs in which all vertices touch the outer face. The proof is provided
in Appendix B.

Theorem 3. The separation problem for LCUT is NP-hard, even when the graph is outerplanar
and the given point x∗ is known to belong to PCUT.

4.3.3 Integer separation for CUT and LCUT

Here we give a separation procedure for CUT and LCUT that applies when x∗ is integer. The
motivation is threefold. First, the fractional separation algorithm for CUT (Proposition 2) relies on
complex algorithms for planar graphs that, to our knowledge, have never been implemented. Mean-
while, the straightforward procedure for CUT taken by Oehrlein and Haunert (2017) requires the
solution of roughly n2 minimum cut problems; this price is often too expensive to justify (Fischetti
et al., 2017; Validi and Buchanan, 2019b; Salemi and Buchanan, 2019). Finally, the separation
problem for LCUT is NP-hard. This motivates the following procedure which builds upon one
proposed by Fischetti et al. (2017).

Algorithm 1 IntegerSeparation(G, p, U, x∗)

1: for b ∈ V do
2: if x∗bb = 1 then
3: let Vb := {i ∈ V | x∗ib = 1}
4: for every component G′ of G[Vb] that does not contain b do
5: let a be an arbitrary vertex of G′ (e.g., one with the largest population)
6: let C be the minimal a, b-separator obtained by Fischetti et al. (2017)
7: if model = LCUT then
8: for c ∈ C do
9: if distG−(C\{c}),p(a, b) > U then

10: C ← C \ {c}
11: add cut xab ≤

∑
c∈C xcb to the model

When G is planar, Algorithm 1 runs in time O(n2) and returns a collection of violated (minimal)
separator inequalities. This time is quite modest given that the solution x∗ has n2 entries. When
the solution is already contiguous, the separation procedure runs in time O(kn). Another nice
property is that the cuts added on line 11 will have a combined O(n) nonzeros.
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Key to our arguments is the observation that each vertex i will belong to at most degG(i) many
of the sets C from line 6. This follows because each minimal a, b-separator obtained from the
algorithm of Fischetti et al. (2017) is a subset of the shore of V (G′), and i can belong to at most
degG(i) such shores (once for each of its neighbors). This implies that the total number of nonzeros
coming from the round of cuts on line 11 is at most

∑
i∈V degG(i) + n = 2m + n = O(n). Here,

m = O(n) holds for simple planar graphs by Euler’s formula.
To argue for a runtime of O(n2) when Algorithm 1 is applied to CUT, see that each vertex i

can take at most one turn as the vertex a from line 5 and the fact that the algorithm of Fischetti
et al. (2017) takes time O(m), and m = O(n) since G is planar.

To argue for a runtime of O(n2) when Algorithm 1 is applied to LCUT, it now suffices to argue
that the total time spent on lines 7 through 10 (over all iterations of b and G′) is at most O(n2).
To see this, observe that the distance found in line 9 can be computed in time O(n) since G is
planar (Henzinger et al., 1997), also recalling that the number of distance computations will be at
most 2m = O(n) because each vertex i will make at most degG(i) appearances in the sets C. Note
that the inequalities added for LCUT will be as strong or stronger than the inequalities added for
CUT. For ease of implementation, we instead use Dijkstra’s shortest path algorithm, meaning that
our code will take time O(n2 log n) instead of time O(n2) when applied to LCUT.

5 Variable Fixing and a Heuristic

In initial experiments, the MIP solver had difficulties handling most tract-level instances, even
when contiguity was not imposed. The large number of variables (n2) and the numerical instability
coming from the wide range of the objective coefficients (wij := pid

2
ij) lead to the following issues.

1. The root LP took a long time to solve with simplex; typically barrier was significantly faster.

2. If the root LP was solved with barrier, the crossover step took a very long time. The primal
and dual push phases were not too costly, but the final simplex cleanup was slow—often taking
ten times longer than barrier.

3. Even when an optimal basis for the root LP could be found, the MIP solver took a long time
to find a good MIP-feasible solution.

To mitigate these issues, we sought to reduce the model’s size by safely fixing some of the
variables. By safe, we mean that doing so preserves an optimal solution. Intuitively, opportunities
for variable fixing should be quite common. For example, if a vertex j is near the border of the
state, it is likely not an optimal district center; instead, we expect the district centers to be in the
state’s interior. If we can rigorously argue that this is the case, we can fix the n variables xij ,
i ∈ V , to zero. Similarly, if vertices i and j are far from each other (say, at opposite corners of
a state), then we expect that we can fix xij = 0. It is also possible to safely fix some variables
to one, although this occurred so infrequently that we chose not to pursue it. This is perhaps not
surprising; very few variables could safely be fixed to one in the experiments of Beasley (1993) for
the k-median problem when k was small.

To safely fix variables to zero, we use Lagrangian arguments. We run a heuristic to find an
upper bound UB on the optimal objective value. Then, we construct a Lagrangian relaxation
model that provides a lower bound LBij on the objective value when a variable xij is tentatively
fixed to one. The bounds LBij can be computed almost for free while solving the Lagrangian. Now,
if LBij > UB, then xij cannot equal one in an optimal solution, meaning that we can safely fix
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xij = 0. The Lagrangian is solved using an implementation of Shor’s r-algorithm that was developed
by one of the authors (Lykhovyd, 2019), see also Shor (1985) and Kappel and Kuntsevich (2000).
We found that the Lagrangian terminated more quickly and with a larger objective if the Lagrangian
multipliers were initialized using optimal dual variables from the LP relaxation, which we obtained
with barrier (no crossover). These initial multipliers can be found in the ralg warm directory.

Figure 6 illustrates the power of this variable fixing procedure for Oklahoma. The heuristic runs
for 4 seconds and the Lagrangian runs for 3 seconds (when given optimal LP dual variables). The
total number of xij variables reduces from 1,094,116 to 12,425, a savings of 99%.

Figure 6: When contiguity is imposed, 96% of the center variables xjj are safely fixed to zero for
Oklahoma at the tract level; the non-fixed tracts are filled in black.

5.1 Heuristic

After some ad hoc testing, we settled on the following heuristic. It draws upon the districting experi-
ence of Hess et al. (1965) and the k-median experience of Resende and Werneck (2004). Pseudocode
for RandomizedHeuristic() and LocalSearch() is given in Algorithms 2 and 3, respectively.

1. call RandomizedHeuristic for 10 iterations to find an initial set S of centers;

2. call LocalSearch(S) to improve the set of centers, using a first-improvement strategy;

3. if contiguity is required, solve a particular instance of the SHIR model (detailed below).

The descent steps in the inner loop of RandomizedHeuristic originate with Hess et al. (1965), see
their Figure 1. They propose to find a heuristic solution by solving a restricted problem. That is,
a set S of k centers is fixed (i.e., fix xjj = 1 for j ∈ S) and the task is to assign the other vertices
to them. At the time, Hess et al. heuristically solved this restricted problem by transportation
techniques, but we use a MIP solver and denote the objective of this restricted problem by obj(S).
The solution to this restricted problem partitions the vertices into k districts. The best center of
each district is calculated, and the restricted problem is resolved taking this new set of centers as
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S. Repeat until convergence. This heuristic works surprisingly well even when the initial set of
centers is chosen uniformly at random (as observed by Resende and Werneck). Following Resende
and Werneck, we run this for 10 iterations and return the best set of centers that was found.

Algorithm 2 RandomizedHeuristic(maxit)

1: S∗ ← ∅
2: for i = 1, 2, . . . ,maxit do
3: pick a set S of k centers uniformly at random from V
4: repeat
5: find a solution x∗ to the Hess model (1) restricted to the centers {v1, v2, . . . , vk} ← S
6: for j = 1, 2, . . . , k do
7: let Vj be the vertices assigned to vj in x∗

8: let v∗j be the best center of Vj , i.e., a vertex b ∈ Vj that minimizes
∑

i∈Vj
wib

9: S ← {v∗1 , v∗2 , . . . , v∗k}
10: until convergence
11: if obj(S) < obj(S∗) then
12: S∗ ← S
13: return S∗

However, the subsequent local search procedure used by Resende and Werneck would be too
burdensome for us. In the traditional k-median problem, the problem of assigning customers to
facilities is trivial once the facilities have been opened: assign each customer to its nearest open
facility. This allows one to quickly evaluate whether it is beneficial to swap a center with a non-
center. The same cannot be said for districting due to the population bounds and contiguity
constraints. This makes the problem of assigning vertices to centers, i.e., the function evaluation
obj(S), an NP-hard problem. Consequently, we find just one local minimum with LocalSearch,
starting the search from the best set of centers found by RandomizedHeuristic. To further speed
up local search, we only consider swapping a center s ∈ S with one of its neighbors s′ ∈ V \S. This
reduces the number of function evaluations from |S|(n− |S|) to roughly

∑
i∈S degG(i) in each call

of LocalSearch. For California at the tract level, this reduction is from 425,000 to roughly 300.

Algorithm 3 LocalSearch(S)

1: for s ∈ S do
2: for s′ ∈ NG(s) ∩ (V \ S) do
3: S′ ← (S \ {s}) ∪ {s′}
4: if obj(S′) < obj(S) then
5: return LocalSearch(S′)

6: return S

Lastly, if required, we solve a final MIP to find a contiguous solution. Typically, the solution
identified in local search is nearly contiguous and few changes are needed to achieve contiguity. To
exploit this observation, we take the current set of district centers S ⊆ V and fix the associated
variables xjj to one in the SHIR model. For most states, this is sufficient for the MIP solver to
identify a good contiguous solution within a few seconds. However, we observed that the MIP
solver still struggled to solve this restricted problem on some of the largest instances. In response,
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we take the following approach. For each center j ∈ S, do the following:

(i) identify the vertices Vj that are assigned to j in the local search solution;

(ii) identify the component of G[Vj ] that contains j and let J be its vertex set;

(iii) for each vertex i ∈ J , provide xij = 1 as part of a warm start solution; and

(iv) if working with a tract-level instance: for each vertex i in the interior of J , fix xij = 1.

Here, we define the interior of J to be the vertices in J whose neighbors in G also belong to J .
In practice, we found that the last two steps guide the MIP solver to a contiguous solution

without sacrificing much in terms of solution quality. This tweak allowed us to find (contiguous)
feasible solutions for states like Illinois, New York, and Texas at the tract level.

5.2 Lagrangian-based variable fixing for Hess model

Lagrangian techniques are quite common and useful for variants of the k-median problem (Beasley,
1993) and have also been used for districting purposes (Hojati, 1996). Here, we propose to use
Lagrangian reduced costs to safely fix many of the variables xij to zero before building the Hess
model, thus reducing it to a more manageable size. A similar approach was taken by Briant and
Naddef (2004) for the diversity management problem.

The Lagrangian relaxation model is obtained from the Hess model as follows. We relax the
assignment constraints (1b), population lower bounds (1d), and population upper bounds (1d) and
penalize their violation in the objective function with (vector) multipliers α, λ, and υ, respectively.
Following Beasley (1993) and Hojati (1996), we scale the population constraints by dividing them by
L and U , respectively. The optimal objective of the following Langragian is denoted by L(α, λ, υ).

min
∑
i∈V

∑
j∈V

wijxij +
∑
i∈V

αi

1−
∑
j∈V

xij

+
∑
j∈V
|λj |

(
xjj −

∑
i∈V

pi
L
xij

)

+
∑
j∈V
|υj |

(∑
i∈V

pi
U
xij − xjj

)
(13a)

∑
j∈V

xjj = k (13b)

xij ≤ xjj ∀i, j ∈ V (13c)

xij ∈ {0, 1} ∀i, j ∈ V. (13d)

There are two main differences with previous works (besides the definition of w). First, we have
population lower and upper bounds (L and U), while Beasley (1993) had no analogue of L and Hojati
(1996) had an equality constraint (i.e., L = U). Second, we take the absolute values of λj and υj
in the Lagrangian’s objective function, while Beasley (1993) required υj to be nonnegative. The
absolute-value approach for handling inequality constraints is simpler and more effective for Shor’s
r-algorithm (Shor, 1985, p. 134), cf. (Mikhalevich et al., 1977, p. 126).

To simplify the Lagrangian’s objective function, we can collect like terms. For this, define

ŵij =

 wij − αi − |λj |
(pi
L

)
+ |υj |

(pi
U

)
if i 6= j

wij − αi − |λj |
(pi
L

)
+ |υj |

(pi
U

)
+ |λj | − |υj | if i = j
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for every i ∈ V and j ∈ V . The Lagrangian’s objective function now reduces to

min
∑
i∈V

αi +
∑
i∈V

∑
j∈V

ŵijxij .

To find an optimal solution x∗ to the Lagrangian, consider the case where vertex j ∈ V is
selected as a center. In this case, it would be optimal to assign vertex i to center j if and only if
ŵij ≤ 0. Thus, if j ∈ V were selected as a center, its contribution to the objective would be

Wj := ŵjj +
∑

i∈V \{j}

min {0, ŵij} ,

otherwise the contribution would be zero.
With these observations, the Lagrangian reduces to the following n-variable problem.

min
∑
i∈V

αi +
∑
j∈V

Wjxjj (14a)

∑
j∈V

xjj = k (14b)

xjj ∈ {0, 1} ∀j ∈ V. (14c)

This can be solved by identifying the k different vertices j with the smallest Wj values and setting
their variables xjj to one; set all others to zero. The objective value of this solution is equal to
L(α, λ, υ), which provides a lower bound on our original MIP (whether or not contiguity is imposed).

Now, we discuss how to safely fix variables to zero in the Hess model (1) using the heuristic
upper bound UB and the Lagrangian. Let x∗ be an optimal solution to the reduced Lagrangian
problem (14) with objective value L(α, λ, υ). The associated set of centers is S := {v ∈ V | x∗vv = 1}.
If we were to tentatively fix xij = 1, the resulting Lagrangian bound Lij(α, λ, υ) would be

Lij(α, λ, υ) =


L(α, λ, υ) if j ∈ S, i = j
L(α, λ, υ) + max{0, ŵij} if j ∈ S, i 6= j
L(α, λ, υ)−max

v∈S
{Wv}+Wj if j ∈ V \ S, i = j

L(α, λ, υ)−max
v∈S
{Wv}+Wj + max{0, ŵij} if j ∈ V \ S, i 6= j.

This value can be used to update the lower bound LBij ← max{Lij(α, λ, υ), LBij} on the objective
value that would result from fixing xij = 1. Observe that L(α, λ, υ) and max{Wv | v ∈ S} do not
depend on i nor j, meaning that they can be precomputed, stored, and then used to update all of
the LBij values in time Θ(n2).

The outer problem for the Lagrangian (for finding the best Lagrange multipliers) is controlled
by Shor’s r-algorithm. When it terminates with the final values LBij , we fix xij = 0 if LBij > UB.

5.3 Lagrangian-based variable fixing for contiguity models

We can fix even more variables xij to zero by exploiting contiguity. Ideally, we would add constraints
to (13) requiring that the vertices Vj(x) assigned to j induce a connected subgraph. In this case,
the Lagrangian relaxation model could be solved by redefining Wj as the weight of a minimum-
weight connected subgraph (MWCS) rooted at j (where the weight of vertex i is ŵij) and again
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solving the problem (14). One issue is that the rooted MWCS problem is NP-hard. While this
problem has been studied frequently lately (Álvarez-Miranda et al., 2013a,b; Álvarez-Miranda and
Sinnl, 2017; Rehfeldt et al., 2019), and several research codes perform quite well on benchmark
instances (Fischetti et al., 2017; Gamrath et al., 2017; Rehfeldt and Koch, 2019), we choose not to
use them given how frequently we would need to solve the rooted MWCS problem. Also, preliminary
experiments with solving the rooted MWCS problem exactly showed little to no improvement—in
terms of the number of variables fixed—over the simple and very quick procedure that was settled on.

We consider a relaxed form of contiguity for which all LBij values can be updated in O(n2)
time. This relaxed form of contiguity only enforces that an i, j-path exists within G[Vj(x)] if xij is
tentatively fixed to one. For this, define the weights qju as below, representing the “extra” cost to
use vertex u in an i, j-path in district Vj(x). Observe that the “cost” ŵuj of vertex u has already
been accounted for in Wj if u = j or ŵuj ≤ 0, giving an extra cost of zero.

qju =

{
0 if u = j or ŵuj ≤ 0
ŵuj otherwise.

Again, let L(α, λ, υ) be the objective value of the Lagrangian relaxation model (14) and let S be the
associated set of centers. Then, a lower bound on the contiguity-constrained Lagrangian relaxation
model—when xij is tentatively fixed to one—is as follows.

L̃ij(α, λ, υ) =

{
L(α, λ, υ) + distG,qj (i, j) if j ∈ S
L(α, λ, υ)−max

v∈S
{Wv}+Wj + distG,qj (i, j) if j /∈ S.

Here, distG,qj (i, j) is the vertex-weighted distance from i to j, where vertex u has weight qju. These
distances distG,qj (·, j) can be computed in time O(n) with a planarity-exploiting single-source

shortest path algorithm (Henzinger et al., 1997). Thus, all updates LBij ← max{LBij , L̃ij(α, λ, υ)}
can be computed in time O(n2). However, for ease of implementation, we use Dijkstra’s algorithm,
so our code takes time O(n2 log n) to update the LBij values. As before, we fix xij = 0 if LBij >
UB. Theorem 4 ensures that this is safe.

Theorem 4. For every set of Lagrange multipliers (α, λ, υ) we have z∗ij ≥ L̃ij(α, λ, υ), where z∗ij
is the optimal objective of the Hess model when xij is fixed to one and contiguity is imposed.

Proof. Consider a set of Lagrange multipliers (α, λ, υ), the corresponding ŵ and W , and an optimal
set of centers S for the Lagrangian (14). Then, let x∗ be an optimal solution to the Hess model (1)
when xij is fixed to one and contiguity is imposed, and let S∗ := {v ∈ V | x∗vv = 1} be the associated
set of centers. Observe that subset of vertices assigned to j induces a connected subgraph, so there
is a path P from i to j whose vertices u ∈ V (P ) satisfy x∗uj = 1.

Claim 1. z∗ij ≥
∑

u∈V αu +
∑

v∈S∗Wv + distG,qj (i, j).
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Proof. Using the notations (a)+ := max{0, a} and (a)− := min{0, a}, observe that

z∗ij =
∑
u∈V

∑
v∈V

wuvx
∗
uv (15a)

≥
∑
u∈V

∑
v∈V

wuvx
∗
uv +

∑
u∈V

αu

(
1−

∑
v∈V

x∗uv

)
+
∑
v∈V
|λv|

(
x∗vv −

∑
u∈V

pu
L
x∗uv

)

+
∑
v∈V
|υv|

(∑
u∈V

pu
U
x∗uv − x∗vv

)
(15b)

=
∑
u∈V

αu +
∑
u∈V

∑
v∈V

ŵuvx
∗
uv (15c)

≥
∑
u∈V

αu +
∑
v∈S∗

Wv + distG,qj (i, j). (15d)

Here, inequality (15b) holds by the feasibility of x∗ for the Hess model. Equality (15c) holds by
the definition of ŵ. Finally, inequality (15d) holds by inequalities (16), which are shown below.∑

u∈V

∑
v∈V

ŵuvx
∗
uv =

∑
v∈V

ŵvvx
∗
vv +

∑
v∈V

∑
u∈V \{v}

(ŵuv)−x∗uv +
∑
v∈V

∑
u∈V \{v}

(ŵuv)+x∗uv (16a)

≥
∑
v∈V

ŵvvx
∗
vv +

∑
v∈V

∑
u∈V \{v}

(ŵuv)−x∗uv +
∑

u∈V (P )\{j}

(ŵuj)
+x∗uj (16b)

(by x∗uv ≤ x∗vv) ≥
∑
v∈V

ŵvvx
∗
vv +

∑
v∈V

∑
u∈V \{v}

(ŵuv)−x∗vv +
∑

u∈V (P )\{j}

(ŵuj)
+x∗uj (16c)

=
∑
v∈V

ŵvv +
∑

u∈V \{v}

(ŵuv)−

x∗vv +
∑

u∈V (P )\{j}

(ŵuj)
+x∗uj (16d)

(by Wv def.) =
∑
v∈V

Wvx
∗
vv +

∑
u∈V (P )\{j}

(ŵuj)
+x∗uj (16e)

(by qju def.) =
∑
v∈S∗

Wv +
∑

u∈V (P )

qju (16f)

(by distG,qj (i, j) def.) ≥
∑
v∈S∗

Wv + distG,qj (i, j). (16g)

�

With Claim 1 established, we turn to the theorem. In the first case, suppose that j ∈ S. Then,

z∗ij ≥
∑
u∈V

αu +
∑
v∈S∗

Wv + distG,qj (i, j)

≥
∑
u∈V

αu +
∑
v∈S

Wv + distG,qj (i, j)

= L(α, λ, υ) + distG,qj (i, j) = L̃ij(α, λ, υ),
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where the inequalities hold by Claim 1 and by the optimality of S for the Lagrangian (14), and the

equalities hold by the definitions of L(α, λ, υ) and L̃ij(α, λ, υ).
In the other case, where j 6∈ S, there exists a vertex s that belongs to S but not to S∗.

(Otherwise, S ⊆ S∗ and j ∈ S∗ \ S, implying the contradiction k = |S| < |S∗| = k). Then,∑
v∈S∗

Wv =
∑

v∈(S∗∪{s})\{j}

Wv −Ws +Wj

≥
∑
v∈S

Wv −Ws +Wj

≥
∑
v∈S

Wv −max
v∈S
{Wv}+Wj ,

which, along with Claim 1, implies that

z∗ij ≥
∑
u∈V

αu +
∑
v∈S∗

Wv + distG,qj (i, j)

≥
∑
u∈V

αu +
∑
v∈S

Wv −max
v∈S
{Wv}+Wj + distG,qj (i, j)

= L(α, λ, υ)−max
v∈S
{Wv}+Wj + distG,qj (i, j) = L̃ij(α, λ, υ),

where the equalities hold by the definitions of L(α, λ, υ) and L̃ij(α, λ, υ).

6 Computational Experiments

In this section, we conduct an extensive computational study. Broadly speaking, the aim is to
answer the questions: (i) Which model for imposing contiguity is the fastest in practice? (ii) Is this
fastest model able to solve the large-scale instances encountered in practice?

Most experiments were performed on a machine with Intel Xeon E3-1270 v6 “Kaby Lake” 3.80
GHz CPU with 8 cores and 32 GB RAM. The MIP solver is Gurobi Optimizer 8.1.1. When solving
the MIPs, default settings are used with the following exceptions: 8 threads maximum, 10 GB RAM
maximum, concurrent method for the LP relaxation, and zero MIP gap tolerance. We invoke the
LazyConstraints parameter when solving the CUT and LCUT models. In the CUT and LCUT
implementations, only integer points are separated, using Algorithm 1. This choice was informed
by the authors’ previous experience (Salemi and Buchanan, 2019; Validi and Buchanan, 2019b) and
the experience of other researchers (Fischetti et al., 2017; Arslan et al., 2019b).

Recall that to initialize the Lagrangian procedure we use optimal dual multipliers from the LP
relaxation of the Hess model. In this case, the barrier method is used to solve the LP. For four states
with the most census tracts (FL, NY, TX, and CA) the size of this LP model exceeds available
memory, in which case we solve the LP using a different machine that has dual Intel Xeon E5-2620
“Sandy Bridge” hex core 2.0 GHz CPUs and 256 GB RAM.

6.1 Data preparation

To compare the computational performance of the models, we needed test instances having the
following input data: contiguity graph G = (V,E), population vector p, bounds L and U , number of
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districts k, and the distance matrix d. This data is not directly provided by the Census (particularly
the graph and distance matrix), and optimization researchers who have studied districting in the
past did not make their data public. This is a significant barrier to entry for those who want to
apply their methods to redistricting problems. Moreover, previous studies have focused on one or
two states, making it impossible to know how well their methods would perform on another state
or if the data were different (say, after a new Census).

For these reasons, we generate the requisite data ourselves for all 50 states using the 2010 Census
numbers. So that future researchers can use the same data and also for purposes of transparency, we
post the complete data set online at https://lykhovyd.com/files/public/districting/. The
GitHub repository includes scripts used to convert the raw data from the Bureau of the Census
(2012) into formats convenient for our use.

We generate the input data at two different levels: county and census tract. There is an average
of 62 counties per state and a maximum of 254 for Texas. Meanwhile, there is an average of 1,461
census tracts per state and a maximum of 8,057 in the case of California. The county-level instances
are small enough that we can apply each of the contiguity formulations. This allows us to compare
them and discern which of them has the best chance to handle large instances. Moreover, several
states require congressional redistricting plans to split the fewest number of counties, and states
such as Iowa and West Virginia split zero counties in their 2013 maps. This makes county-level
instances practical in some cases. However, most states cannot redistrict at the county level. For
example, Dallas County in Texas had a population of 2,368,139 after the 2010 Census, meaning that
it needed to be split into (at least) 4 congressional districts in order to satisfy the rigid population
bounds. Census tracts are designed to be relatively homogeneous and typically have between 2,500
and 8,000 people in them, which provides enough granularity to satisfy the population bounds. The
tract-level instances are sufficiently large and challenging that roughly half of them can be solved
by our techniques, allowing us to show their computational limits. Note, however, that no state has
a law requiring the indivisibility of tracts, and many states perform districting at the block level,
where n approaches one million. The exact techniques considered in this paper cannot handle such
instances, so we do not generate block-level data.

The data is constructed for each state separately, using a suitable map projection from the
EPSG dataset (IOGP, 2019). The centroid of each county or tract is taken as its center, and
Euclidean distances are measured between centroids. If two counties or tracts share a nontrivial
border, we connect them by an edge in G. For some states, the graph G is disconnected (e.g., due
to islands off a state’s coast). In this case, we make it connected by adding a minimum-weight
subset of (currently missing) edges via a straightforward extension of Kruskal’s algorithm. We take
the weight of an edge {i, j} to be the distance between (the centroids) i and j. In this way, a single
island tract will be made adjacent to its nearest tract from the coast. However, if there is a tightly
packed cluster of islands sufficiently far from the coast, only one edge will be added connecting the
islands to the coast; the other added edges will be internal to the island cluster.

Although rare, some tracts are themselves non-contiguous. For example, the tract in Mas-
sachusetts with GEOID 25023990003 consists of three disconnected pieces, each a body of water
with zero population. In these cases, a district that is connected in the contiguity graph may not
be contiguous on the map. In fact, this happened in our experiments. To address this issue, one
could adjust the contiguity graph by creating a different node for each of the tract’s pieces, or by
merging the disconnected pieces into neighboring tracts (Duchin, 2020). However, as our intent in
this paper is to compare the performance of the contiguity formulations on realistic instances—and
not to create “good” plans—we opt to keep the contiguity graphs as-is. In the future, this might
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not be a problem; the criteria specified for the 2020 Census state that “Census tracts must comprise
a reasonably compact and contiguous land area” (Bureau of the Census, 2018).

The other parameters are set as follows, where the number k of congressional districts is known
and set by reapportionment. We compute the ideal population p̄ := 1

k

∑
i∈V pi of a district and

allow a 1% deviation, setting L̂ := 0.995(p̄) and Û := 1.005(p̄), as was suggested in a redistrict-
ing competition held by reformers in Ohio (Altman and McDonald, 2018). We then round the
population bounds (in the appropriate direction) to an integer, i.e., L := dL̂e and U := bÛc.

6.2 Experiments with heuristic and variable fixing

Table 1 reports our experience with the heuristic and variable fixing procedures from Section 5.
For space considerations, only tract-level results are reported here in the paper. Tract-level results
are also more interesting because this is where these procedures are most needed.

Reported under the Lagrangian columns are the lower bound obtained from the Lagrangian
and the time in seconds spent by Shor’s r-algorithm. As noted in Section 5, we initialize Shor’s
r-algorithm with optimal dual multipliers from the LP relaxation of the Hess model. The time to
solve this LP can be substantial—5 days for CA—so we precompute the LP dual multipliers and
store them in the ralg warm directory for reuse; the time to solve this LP is not included in the
time given in Table 1. We see that if Shor’s r-algorithm is limited to (at most) 100 iterations,
it terminates in less than one minute for most instances. The last six columns report the upper
bound obtained via the heuristic (without and with contiguity constraints), the time spent by the
heuristic, and the percentage of the variables xij that are eventually fixed.

Generally speaking, the objective values of the heuristic solutions (contiguous vs. not) are simi-
lar. So, the price of contiguity appears small. (This is confirmed for optimal solutions later.) Recall
that in our heuristic we solve a series of restricted MIPs. For speed considerations, we do not force
the MIP solver to prove optimality for these restricted MIPs. This explains the perhaps counter-
intuitive observation that, when contiguity is enforced, the heuristic’s objective value sometimes
improves (e.g., for NH, ID, OR, and OK).

Another observation is that the variable fixing procedure is quite powerful, sometimes allowing
us to fix approximately 100% of the variables. While this is most pronounced on the smaller
instances (e.g., RI, NH, ID, HI, ME), some large instances are also amenable to fixing. Roughly
97% of the variables can be fixed for IN which has n = 1, 511 tracts.

Finally, we observe that it can be quite helpful to exploit contiguity in the variable fixing
procedure (Section 5.3). For example, consider the case of TN. Here, the heuristic’s objective value
does not change when contiguity is imposed, but the fixings increase from 8% to 44%. In another
example, CO sees the fixings increase from 40% to 53% despite a degradation in objective value.

6.3 County-level results

A majority of the county-level instances are infeasible. For example, consider Texas. Dallas County
had a population of pv = 2, 368, 139, which far exceeds the population limit U = 701, 980 that we
impose. Thus, Texas is obviously infeasible at the county level. This type of overt infeasibility
where the population of a single vertex exceeds U is exhibited by 27 states. These, as well as the 7
trivial instances where k = 1, are uninteresting and are excluded from our county-level experiments.

This leaves 16 county-level instances. It turns out that each of them is MIP-feasible under
the Hess model, although 4 of them become infeasible when contiguity is imposed (CO, NH, OR,
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Table 1: Heuristic and Lagrangian results. We report the number of tracts (n), the number of
districts (k), the Lagrangian objective (LB) and time in seconds, as well as the heuristic objective
(UB), time, and the percentage of the variables fixed to zero (fixed) when contiguity is (not)
imposed—rounded to the nearest percent.

Lagrangian w/o contiguity w/ contiguity
State n k LB time UB time fixed UB time fixed

RI 244 2 228.33 0.09 228.42 0.21 100 228.42 0.23 100
NH 295 2 2,687.72 0.09 2,689.07 0.18 100 2,688.28 0.30 100
ID 298 2 53,913.93 0.22 53,930.05 0.15 100 53,916.36 0.20 100
HI 351 2 13,990.50 0.22 13,991.27 0.17 100 13,991.95 0.29 100
ME 358 2 7,713.30 0.30 7,716.04 0.16 100 7,716.04 0.22 100
WV 484 3 10,789.79 0.52 11,801.80 0.66 48 11,834.84 0.87 58
NM 499 3 31,575.28 0.53 31,598.10 1.72 95 31,608.19 1.91 95
NE 532 3 21,975.38 0.59 21,983.42 1.28 99 21,983.42 1.45 99
UT 588 4 22,029.31 0.81 22,035.62 2.03 97 22,037.00 2.50 97
MS 664 4 16,295.54 0.98 16,303.82 1.81 100 16,308.89 2.05 100
AR 686 4 15,490.50 1.02 15,565.41 3.85 96 15,569.97 4.09 97
NV 687 4 11,367.90 1.32 12,443.84 5.96 35 12,497.05 6.14 43
KS 770 4 22,654.34 1.43 22,786.63 3.08 82 22,786.69 3.87 85
IA 825 4 18,164.68 1.72 18,202.13 2.77 96 18,206.43 3.37 97
CT 833 5 1,420.41 1.68 1,422.13 4.50 99 1,422.13 4.74 99
OR 834 5 26,742.01 1.87 26,750.23 9.55 98 26,750.15 10.36 98
OK 1,046 5 19,106.02 3.34 19,132.60 3.60 99 19,131.99 4.35 99
SC 1,103 7 8,356.08 3.28 9,293.98 13.48 18 9,294.45 14.94 40
KY 1,115 6 14,793.25 2.90 14,833.72 10.25 95 14,835.16 11.27 96
LA 1,148 6 13,805.17 3.61 14,829.56 12.52 32 14,830.45 13.92 48
AL 1,181 7 13,058.24 3.86 13,510.26 17.54 49 13,510.26 18.08 68
CO 1,249 7 19,715.16 4.27 19,916.43 15.99 40 19,918.36 17.50 53
MN 1,338 8 24,207.22 4.86 24,220.52 184.95 89 24,224.19 217.11 87
MO 1,393 8 18,830.09 5.47 21,214.38 29.24 16 21,222.79 31.44 44
MD 1,406 8 5,079.56 5.56 5,084.47 26.79 94 5,084.53 29.75 95
WI 1,409 8 16,272.83 5.34 16,340.39 28.70 79 16,340.81 32.23 84
WA 1,458 10 12,376.66 5.70 12,604.21 47.42 53 12,609.09 71.92 61
MA 1,478 9 2,558.82 6.09 2,626.48 50.55 41 2,627.03 53.75 57
TN 1,497 9 10,783.27 6.05 13,092.08 48.49 8 13,092.08 51.55 44
IN 1,511 9 11,061.11 6.46 11,084.81 28.10 97 11,085.37 32.27 97
AZ 1,526 9 29,479.16 6.71 30,219.11 81.92 22 30,220.39 88.56 33
VA 1,907 11 12,836.67 11.22 13,814.08 379.21 20 13,815.25 391.63 49
GA 1,969 14 15,836.59 11.43 15,955.65 243.27 67 15,955.65 242.99 79
NJ 2,010 12 2,250.25 12.09 2,291.51 213.81 52 2,291.51 216.89 70
NC 2,195 13 14,416.66 14.29 14,679.00 331.61 52 14,680.02 350.92 77
MI 2,813 14 24,569.50 24.79 24,685.68 775.69 56 24,686.55 788.41 71
OH 2,952 16 11,520.54 26.59 11,908.25 1,936.37 25 11,911.64 2,056.53 65
IL 3,123 18 15,815.07 30.26 16,067.49 14,316.10 40 16,091.05 14,403.97 55
PA 3,218 18 11,424.45 32.59 11,799.41 6,674.80 38 11,806.00 6,721.78 66
FL 4,245 27 14,766.11 58.53 15,222.31 7,668.40 38 15,225.47 7,811.97 65
NY 4,919 27 15,405.98 77.60 16,700.05 13,848.68 7 16,700.81 15,120.01 45
TX 5,265 36 57,770.13 105.63 72,846.42 14,691.58 1 72,860.21 15,657.41 14
CA 8,057 53 26,238.24 218.99 27,603.66 22,122.05 28 - - -
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Table 2: An initial classification of the 50 county-level instances
Class # States
Overt inf. 27 AZ, CA, CT, FL, GA, HI, IL, IN, KY, MA,

MC, MI, MN, MO, NC, NJ, NV, NY, OH,
PA, RI, TN, TX, UT, VA, WA, WI.

Trivial (k = 1) 7 AK, DE, MT, ND, SD, VT, WY.
Remaining 16 AL, AR, CO, IA, ID, KS, LA, ME, MS,

NE, NH, NM, OK, OR, SC, WV.

SC), leaving 12 contiguity-feasible instances. The reasons why CO and OR are infeasible can be
understood by inspecting the sub-maps depicted in Figure 7. For 4 instances, the optimal solution
that is returned by the Hess model under the moment-of-inertia (MOI) objective happens to be
contiguous (IA, ID, KS, MS). In the other 8 cases, the Hess solution that is found is not contiguous.
Further, when contiguity is explicitly imposed, the optimal objective value increases, implying that
for these states no optimal solution to the Hess model is contiguous (e.g., see Figure 8).

(a) Denver metro (b) Portland metro

Figure 7: Side (a) shows that Colorado is infeasible at the county level because there is no feasible
district containing Denver County (pop. 600,158). Side (b) shows that Oregon is infeasible at the
county level because there is no feasible district containing Maltnomah County (pop. 735,334).

(a) Optimal solution w/o contiguity (b) Optimal solution w/ contiguity

Figure 8: Optimal county-level solutions for Oklahoma.

Table 3 reports the optimal objective values and solve times (in seconds) for the 16 remaining
county-level instances. Note that the reported times include all operations (heuristic, Lagrangian
fixing, model build, model solve) excluding read time and the time to get the initial Lagrange
multipliers (see Section 5). More details can be found in the results directory in the GitHub
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repository. As the table shows, the Hess model is relatively easy for the MIP solver at the county
level, with each being solved to optimality in under 10 seconds.

Table 3: Times and objective values for solving the resulting MIPs at the county level. Infeasibilities
are denoted by an objective value of∞, while TL denotes that the one-hour time limit was reached.

w/o contiguity w/ contiguity
State n k obj Hess obj MCF SHIR CUT LCUT
NH 10 2 3,641.24 0.03 ∞ 0.23 0.12 0.12 0.08
ME 16 2 10,789.07 0.03 19,093.26 2.42 0.78 0.72 0.66
NM 33 3 32,847.05 0.07 32,944.25 0.63 0.11 0.10 0.10
OR 36 5 31,424.49 0.40 ∞ 55.80 0.59 3.08 0.32
ID 44 2 61,232.58 0.06 61,232.58 2.79 0.14 0.09 0.09
SC 46 7 12,479.94 8.67 ∞ TL TL TL TL
WV 55 3 11,844.76 0.82 12,000.62 62.16 1.68 0.86 0.84
LA 64 6 17,239.16 2.14 17,272.65 66.87 4.08 2.22 2.23
CO 64 7 35,466.64 2.46 ∞ 215.25 2.74 TL 1.94
AL 67 7 15,519.54 3.83 16,627.25 457.52 64.29 20.94 19.41
AR 75 4 16,525.07 0.53 16,543.15 29.04 1.62 0.96 0.96
OK 77 5 21,527.57 1.01 21,756.50 101.64 5.06 1.64 1.97
MS 82 4 16,142.04 0.41 16,142.04 8.31 0.54 0.49 0.49
NE 93 3 22,112.00 0.28 22,193.01 13.33 0.57 0.45 0.47
IA 99 4 17,748.05 0.85 17,748.05 29.23 1.47 0.87 0.87
KS 105 4 23,736.89 1.34 23,736.89 48.98 1.78 1.10 1.11

For the contiguity models, one observes that the MCF model is the slowest (attributable to its
large size), while the others are reasonably competitive with each other. In some cases, however,
LCUT edges out the competition. For example, LCUT edges out SHIR for Alabama (19 vs. 64
seconds). We attribute this time difference to LCUT being smaller and more nimble than SHIR.
Meanwhile, LCUT edges out CUT for Colorado (2 seconds vs. TL). In fact, we find that LCUT
proves infeasibility of Colorado at the root node of the branch-and-bound tree. To illustrate,
recall Figure 7. Denver County cannot be paired with any adjacent counties without exceeding
the population upper bound. Thus, the special case of the length-U a, b-separator inequalities from
Remark 3 enforces that Denver County cannot be assigned to other counties, nor can other counties
be assigned to it. So, Denver County must be in its own district. However, this conflicts with the
population lower bound, proving infeasibility. We also observe that SHIR proves the infeasibility
of Colorado at the root node—with the help of the MIP solver’s presolve and cuts. When these
features are turned off, branching is required to solve the SHIR model.

Surprisingly, South Carolina (with only 46 counties!) was left unsolved by all contiguity models
after a one-hour time limit. Digging deeper, we find that each of its counties can be placed in a
suitable district (satisfying contiguity and population balance), but that these districts cannot be
pieced into a full districting plan. This provides a partial explanation why the contiguity models
have more trouble proving the infeasibility of this instance than, say, Colorado. Another reason
why the models might struggle is a sort of symmetry. To illustrate, observe that a partition
(V1, V2, . . . , Vk) of the vertices can be represented in many ways in the formulation (|V1||V2| · · · |Vk|
to be exact). Normally, we can distinguish between these solutions by their objective values (which
differ based on the choice of centers). If any such feasible solution is discovered, then the other
representations (with inferior objectives) would be pruned by bound. However, when the instance is
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infeasible there is no incumbent solution that can be used for pruning, unleashing the combinatorial
explosion. If an instance is suspected to be infeasible, we can attempt to prove this by imposing a
canonical center for a district, say, with the largest population, by fixing xij = 0 whenever pi > pj .
In this way, we can prove the infeasibility of South Carolina with LCUT in three seconds and safely
report the objective value in Table 3 as ∞. Applegate (2019) and Buchanan (2019) confirm the
infeasibility of South Carolina using different methods.

6.4 Tract-level results

Now we report tract-level results for the Hess, SHIR, and CUT formulations. The formulation MCF
is omitted because it is too large to handle tract-level instances, and LCUT is omitted because it
performs nearly the same as CUT on tract-level instances. As before, we do not consider the seven
trivial instances (where k = 1) in our experiments. The remaining 43 tract-level instances are
feasible. Figure 9 gives an optimal solution for Oklahoma.

Figure 9: A tract-level solution for Oklahoma that is optimal for the Hess and CUT models.

Table 4 gives the results under a one-hour time limit. In every case, we apply the heuristic
from Section 5 and provide the resulting solution to Gurobi as a MIP start. We also use the
associated upper bound in the Lagrangian-based procedure discussed in Section 5 to safely fix some
variables to zero. As expected, the formulations solve most quickly when the number of tracts
is small, and they generally struggle more and more as n increases. They all solve instances as
big as Kentucky (n = 1, 115), but solve none of the larger instances within a one-hour time limit.
Somewhat surprisingly, the MIP solver even struggles with West Virginia (n = 484) and Nevada
(n = 687)–whether or not contiguity is imposed. One explanation for this is that the Lagrangian-
based reduced cost fixing is less effective on these instances (recall Table 1).

In some cases, Hess is noticeably faster than SHIR and CUT; for example, the times for Kentucky
are 245 and 2272 and 2354 seconds, respectively. There are also cases where CUT is noticeably
faster than Hess and SHIR; for example, the times for Kansas are 660 and 1310 and > 3600
seconds, respectively. Meanwhile, SHIR is consistently the slowest, performing worse than Hess in
all cases, and worse than CUT in all but one case (Kentucky, by 82 seconds). The dominance of
Hess over SHIR matches the experience of many researchers over the years who have observed that
contiguity constraints tend to make problems more difficult. However, if using an alternative model
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Table 4: Results for solving the resulting MIPs at the tract level. For each formulation, we report the final lower and upper
bounds at termination within a 3600 second time limit, as reported by Gurobi. When the LP relaxation does not solve within
the time limit, the time is reported as LPNS.

Hess SHIR CUT
State LB UB time contiguous LB UB time LB UB time

RI 228.42 228.42 0.00 yes 228.42 228.42 0.02 228.42 228.42 0.00
NH 2,688.28 2,688.28 0.03 yes 2,688.28 2,688.28 0.13 2,688.28 2,688.28 0.01
ID 53,916.36 53,916.36 0.01 yes 53,916.36 53,916.36 0.02 53,916.36 53,916.36 0.00
HI 13,991.27 13,991.27 0.01 no 13,991.63 13,991.63 0.15 13,991.63 13,991.63 0.01
ME 7,716.04 7,716.04 0.00 - 7,716.04 7,716.04** 0.02 7,716.04 7,716.04** 0.00
WV 11,026.27 11,801.80 TL - 10,937.99 11,834.84 TL 11,053.92 11,834.84 TL
NM 31,598.10 31,598.10 24.79 no 31,603.15 31,603.15 216.76 31,603.15 31,603.15 44.78
NE 21,983.14 21,983.14 0.22 no 21,983.42 21,983.42 2.40 21,983.42 21,983.42 0.16
UT 22,035.37 22,035.37 9.57 no 22,037.00 22,037.00 44.09 22,037.00 22,037.00 16.85
MS 16,303.82 16,303.82 0.17 no 16,305.45 16,305.45 1.57 16,305.45 16,305.45 0.19
AR 15,563.52 15,563.52 17.72 no 15,569.97 15,569.97 119.47 15,569.97 15,569.97 14.99
NV 11,383.34 12,443.84 TL - 11,368.70 12,497.05 TL 11,370.55 12,497.05 TL
KS 22,784.49 22,784.49 1,310.10 no 22,784.53 22,786.69 TL 22,786.69 22,786.69 660.25
IA 18,172.01 18,172.01 12.27 no 18,176.37 18,176.37 276.96 18,176.37 18,176.37 39.99
CT 1,422.13 1,422.13 8.39 no 1,422.13 1,422.13 32.21 1,422.13 1,422.13 6.96
OR 26,749.59 26,749.59 81.37 no 26,749.74 26,749.74 733.67 26,749.74 26,749.74 83.74
OK 19,107.72 19,107.72 2.09 yes 19,107.72 19,107.72 17.94 19,107.87 19,107.87* 1.65
SC 8,357.73 9,293.98 TL - - 9,294.45 LPNS 8,360.04 9,294.45 TL
KY 14,833.72 14,833.72 244.93 no 14,835.16 14,835.16 2,272.44 14,835.16 14,835.16 2,354.22
LA 13,909.48 14,829.56 TL - - 14,830.45** LPNS 13,909.56 14,830.45** TL
AL 13,073.21 13,510.26 TL - - 13,510.26 LPNS 13,080.87 13,510.26 TL
CO - 19,916.43 LPNS - - 19,918.36 LPNS 19,715.23 19,918.36 TL
MN 24,217.31 24,220.16 TL - 24,210.23 24,223.84 TL 24,217.35 24,224.19 TL
MO - 21,214.38 LPNS - - 21,222.79 LPNS - 21,222.79 LPNS
MD 5,082.38 5,084.32 TL - 5,080.71 5,084.53 TL 5,083.39 5,084.53 TL
WI 16,272.94 16,311.75 TL - - 16,340.81 LPNS 16,273.67 16,340.81 TL
WA - 12,604.21 LPNS - - 12,609.09 LPNS - 12,609.09 LPNS
MA - 2,626.48 LPNS - - 2,627.03** LPNS - 2,627.03** LPNS
TN 10,783.27 13,092.08 TL - - 13,092.08 LPNS 10,786.16 13,092.08 TL
IN 11,078.13 11,081.76 TL - 11,075.06 11,081.76 TL 11,078.06 11,081.76 TL
AZ - 30,219.11 LPNS - - 30,220.39 LPNS - 30,220.39 LPNS
VA - 13,814.08 LPNS - - 13,815.25 LPNS 12,836.85 13,815.25 TL
GA 15,836.60 15,955.65 TL - - 15,955.65 LPNS - 15,955.65 LPNS
NJ - 2,291.51 LPNS - - 2,291.51 LPNS - 2,291.51 LPNS
NC - 14,679.00 LPNS - - 14,680.02 LPNS 14,417.50 14,680.02 TL
MI - 24,685.68 LPNS - - 24,686.55 LPNS - 24,686.55 LPNS
OH - 11,908.25 LPNS - - 11,911.64 LPNS - 11,911.64 LPNS
IL - 16,067.49 LPNS - - 16,091.05 LPNS - 16,091.05 LPNS
PA - 11,799.41 LPNS - - 11,806.00 LPNS - 11,806.00 LPNS
FL - 15,222.31 LPNS - - 15,225.47 LPNS - 15,225.47 LPNS
NY - 16,700.05 LPNS - - 16,700.81 LPNS - 16,700.81 LPNS
TX - 72,846.42 LPNS - - 72,860.21 LPNS - 72,860.21 LPNS
CA - 27,603.66 LPNS - - - LPNS - - LPNS
* The objective values obtained for the CUT and SHIR models are inconsistent with each other. Suspecting this inconsistency was due to a

numerical issue, we reran both models with the NumericFocus parameter set to 3, which is an action recommended by Gurobi for numerically

unstable instances (Gurobi, 2017). With this change, both models reported an objective value of 19,107.72.
** The best solution that was found is connected in the contiguity graph but not on the map (see Section 6.1). This is due to non-contiguous tracts

in MA (25023990003), LA (22075050100), and ME (multiple).
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for enforcing contiguity (CUT), this no longer seems to be true. In fact, the CUT and Hess models
seem to have very similar performance. They solve the same 16 instances within a one-hour time
limit, and their running times on these instances are on par with each other.

Another observation is the LP relaxations are often quite difficult to solve. Half of the SHIR
LP relaxations could not be solved within the one-hour time limit, and one third of the CUT LP
relaxations could not be solved. This is summarized in Table 5.

Table 5: Summary of tract-level MIP results with a one-hour time limit.
Status Hess SHIR CUT
# MIPs solved 16 15 16
# LPs solved (but not MIP) 11 6 13
# LPs not solved 16 22 14

Out of curiosity, we decided to test the limits of the approach by running select states without a
time limit. Table 6 reports five instances that eventually solved. Interestingly, the MIP solver could
not solve the Hess model for Minnesota when it is told to obey a one-hour time limit; however, when
no time limit is imposed it solves in 2,205 seconds. The MIP solver appears to behave differently
when told to obey a one-hour time limit.

Table 6: Tract-level MIPs that are solved when no time limit is imposed.
Hess CUT

State n k obj time obj time
WV 484 3 11,801.26 27,056.92 11,834.84 28,984.58
MN 1,338 8 24,220.16 2,204.75 24,221.70 92,312.17
MD 1,406 8 5,084.32 36,553.32 5,084.44 75,539.58
WI 1,409 8 16,311.75 173,216.16 16,312.72 293,674.57
IN 1,511 9 11,081.72 10,570.75 11,081.72 13,435.36

7 Conclusion

Many researchers have stated that contiguity constraints make districting problems particularly
difficult to solve. However, for the classical districting problem of Hess et al. (1965), the experiments
conducted in this paper suggest otherwise; the exact same 21 tract-level instances are solved to
optimality whether or not contiguity is imposed. One explanation for this phenomenon is that the
compactness objective proposed by Hess et al. leads to nearly contiguous districting plans; a slight
nudge is all that is needed to achieve “full” contiguity. Formulations based on graph cuts, like the
CUT formulation of Oehrlein and Haunert (2017) and the newly proposed LCUT formulation, are
well-suited to this task. Few inequalities are needed to prove optimality. Meanwhile, flow-based
formulations can also perform well on smaller instances, but their size becomes a problem sooner
as their LP relaxations are larger. The practical difficulty of handling contiguity constraints under
other objective functions (e.g., those unrelated to compactness) is less clear and is left for future
work.
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The biggest bottleneck is solving the root LP relaxations. The bedrock of the formulations
considered in this paper—the Hess formulation—grows quadratically with the number n of vertices.
With Lagrangian reduced-cost fixing, many of these variables can be avoided, allowing half of the
tract-level instances to be solved. With small tweaks to the implementation, other instances may
be within reach, but entirely new ideas may be needed to solve the largest instances like Texas
(n = 5, 265) and California (n = 8, 057).

We make no claims that the maps generated in our computational experiments are “good” or
even legal. For example, our implementation does not explicitly consider the Voting Rights Act,
political subdivisions, partisan makeup of the districts, nor any laws that vary by state. We consider
one measure of compactness (the most prominent one in OR models), but there are many others
in the literature. We hope that the work conducted in this paper (including our publicly available
source code and test instances) will provide a basis for further districting research.
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Appendix A– Formulation Correctness

Here we prove the correctness of the contiguity formulations.

Definition 3. A given x̂ ∈ {0, 1}n×n is consistent if x̂ij ≤ x̂jj for all i, j ∈ V .

In the context of the x variables, a districting plan is represented as follows. If a given x̂ ∈
{0, 1}n×n is consistent, the associated set of district “roots” is given by

R(x̂) := {b ∈ V | x̂bb = 1},

and the district rooted at b ∈ R(x̂) is given by

Vb(x̂) := {a ∈ V | x̂ab = 1}.

Supposing that x̂ is consistent, the four bright-line rules can be expressed mathematically as follows.

1. each vertex i ∈ V belongs to exactly one of the sets Vr(x̂), r ∈ R(x̂);

2. |R(x̂)| = k;

3. for every r ∈ R(x̂), L ≤
∑

i∈Vr(x̂)
pi ≤ U ;

4. for every r ∈ R(x̂), Vr(x̂) induces a connected subgraph in G.

We restate the correctness theorem for completeness.

Theorem. Formulations SHIR, MCF, CUT, and LCUT are correct.

Proof. We are to show that, for each formulation F , x̂ ∈ {0, 1}n×n is consistent and satisfies the
four bright-line rules if and only if x̂ ∈ projx F . By Theorem 1, it suffices to show the two claims:

1. if x̂ ∈ {0, 1}n×n is consistent and satisfies the four bright-line rules, then x̂ ∈ PLCUT; and

2. if (x̂, f̂) ∈ PSHIR and x̂ ∈ {0, 1}n×n, then x̂ is consistent and satisfies the four bright-line
rules.

To prove the first claim, suppose that x̂ satisfies the four bright-line rules and is consistent. By
the first three rules, x̂ satisfies the constraints (9a) from the Hess model. So, all that remains is
to show that x̂ satisfies the length-U a, b-separator inequalities (9b). So, consider vertices a and
b and a length-U a, b-separator C ⊆ V \ {a, b}. If x̂ab = 0, then the constraint (9b) is trivially
satisfied, so suppose x̂ab = 1. This implies that a ∈ Vb(x̂). By the fourth rule, Vb(x̂) induces a
connected subgraph in G, implying that there exists a path P from a to b in G[Vb(x̂)]. Moreover,
this path P has length at most U , because V (P ) is a subset of Vb(x̂) and because p(Vb(x̂)) ≤ U by
the third rule. By the definition of a length-U a, b-separator, there is at least one vertex c ∈ Vb(x̂)
that belongs to both C and V (P ), and so constraint (9b) is satisfied as

x̂ab = 1 = x̂cb ≤
∑
j∈C

x̂jb.

To prove the second claim, suppose that (x̂, f̂) ∈ PSHIR and x̂ ∈ {0, 1}n×n. This implies x̂
is consistent. By the correctness of the Hess formulation, the districting plan Vb(x̂), b ∈ R(x̂),

40



satisfies the first three bright-line rules. So, it suffices to show that the fourth holds, i.e., that each
vertex subset Vb(x̂) induces a connected subgraph Gb := G[Vb(x̂)] in G. For contradiction purposes,
suppose that some Vb(x̂) induces at least two connected components in G, and let S be the vertex
set of a component of Gb that does not contain vertex b. Let N(S) be the neighborhood of S, i.e.,

N(S) := {j ∈ V \ S | ∃ v ∈ S 3 {j, v} ∈ E} .

Then,

1 ≤ |S| =
∑
j∈S

x̂jb =
∑
j∈S

(
f̂ b(δ−(j))− f̂ b(δ+(j))

)
(17a)

=
∑
j∈S

 ∑
i∈N(j)

(f̂ bij − f̂ bji)

 (17b)

=
∑
j∈S

∑
i∈N(j)∩S

(
f̂ bij − f̂ bji

)
+
∑
j∈S

∑
i∈N(j)∩(V \S)

(
f̂ bij − f̂ bji

)
(17c)

= 0 +

∑
j∈S

∑
i∈N(j)∩(V \S)

f̂ bij −
∑
j∈S

∑
i∈N(j)∩(V \S)

f̂ bji

 (17d)

= 0 +

∑
j∈S

∑
i∈N(j)∩(V \S)

f̂ bij − 0

 (17e)

≤ 0 +

 ∑
i∈N(S)

f̂ b(δ+(i))− 0

 (17f)

=
∑

i∈N(S)

f̂ b(δ−(i))−
∑

i∈N(S)

x̂ib (17g)

=
∑

i∈N(S)

f̂ b(δ−(i))− 0 ≤ 0. (17h)

Equation (17a) holds by constraints (2b). Equation (17d) holds because, in the left sum, each

flow variable f̂ bij with i, j ∈ S appears once with a positive coefficient and once with a negative
coefficient, so they cancel each other. Equation (17e) holds by constraints (2c) and (2e), because
x̂ib = 0 for every vertex i ∈ N(S). Inequality (17f) holds by constraints (2e). Equation (17g) holds
by constraints (2b). The equation in line (17h) holds because x̂ib = 0 for every vertex i ∈ N(S). The
inequality in line (17h) then holds by constraints (2c). This results in the contradiction 1 ≤ 0.
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Appendix B – NP-Hardness of Fractional Separation for LCUT

To prove Theorem 3, we require the following lemma. It refers to the Partition problem, in which
positive integers t1, t2, . . . , tn are given as input, and the task is to determine whether there exists
T ⊆ [n] with

∑
i∈T ti =

∑
i∈[n]\T ti.

Lemma 5. Partition remains NP-hard when two of the integers in the input equal (3/8)
∑n

i=1 ti.

Proof. The reduction is from an arbitrary instance of Partition with positive integers s1, s2, . . . , sq.
Let σ = 1

2

∑q
i=1 si be the associated target value, and let n := q + 2. We construct an equivalent

instance of partition t1, t2, . . . , tn, where ti := si for every i ∈ [q], and the last two integers tq+1

and tq+2 are each set to 3σ. The sum
∑n

i=1 ti equals 8σ, meaning that the new target value is 4σ.
This implies that tq+1 and tq+2 cannot be on the same side of the partition, in which case the new
instance of Partition is equivalent to the original one. Since the reduction runs in polynomial
time and since tq+1 = tq+2 = 3σ = (3/8)

∑n
i=1 ti, this proves the lemma.

Proof of Theorem 3. We show that it is NP-complete to determine whether a given point x∗ lies
outside of PLCUT. This problem belongs to NP because a violated inequality from PLCUT is a
suitable witness. The hardness reduction is from a Partition instance from the special class
described in Lemma 5. Without loss, suppose that t1 = t2 = 3

4α, where α := 1
2

∑n
i=1 ti is the target

value, and that α ≥ 17 (otherwise it is solvable in polynomial time by dynamic programming).
Figure 10 details the construction of the graph G = (V,E), the population vector p, and the
nonzeros of the point x∗. Also, set L := 0, U := α − 1, and k := n + 1. The graph G has 3n + 1
vertices and is outerplanar.

1

p1 = 0

x∗
1b =

t1
α+1

x∗
11 = 1− t1

α+1

2

p2 = 0

x∗
2b =

t2
α+1

x∗
22 = 1− t2

α+1

2′

p2′ = t2

x∗
2′b = 1− t2

α+1

x∗
2′2′ =

t2
α+1

1′

p1′ = t1

x∗
1′b = 1− t1

α+1

x∗
1′1′ =

t1
α+1

a
pa = 0
x∗
ab = 1 h2

ph2
= 0

x∗
h2b

= 1

h3

ph3
= 0

x∗
h3b

= 1

. . . hn

phn = 0

x∗
hnb

= 1

n

pn = 0

x∗
nb =

tn
α+1

x∗
nn = 1− tn

α+1

n′

pn′ = tn
x∗
n′b = 1− tn

α+1

x∗
n′n′ =

tn
α+1

b
pb = 0
x∗
bb = 1

Figure 10: An illustration of the graph G = (V,E), the population vector p, and the nonzeros of
x∗.

First, we show that x∗ belongs to PCUT. For every vertex i ∈ V ,
∑

j∈V x
∗
ij = 1, so the assignment

constraints (1b) are satisfied. Furthermore,
∑

j∈V x
∗
jj = n + 1 = k, so constraint (1c) is satisfied.

The population constraints (1d) are clearly satisfied for a, the hi vertices, and the top-most vertices,
so consider a vertex of the type v′ on the bottom, and see that

Lx∗v′v′ = 0

(
tv

α+ 1

)
≤
∑
i∈V

pix
∗
iv′ = tv

(
tv

α+ 1

)
≤ (α− 1)

(
tv

α+ 1

)
= Ux∗v′v′ ,
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where the last inequality holds by tv ≤ 3
4α and α ≥ 4. For vertex b, we have

Lx∗bb = 0(1) ≤
∑
i∈V

pix
∗
ib =

n∑
i=1

pi′x
∗
i′b

=

n∑
i=1

ti

(
1− ti

α+ 1

)

=

n∑
i=1

ti −
(

1

α+ 1

) n∑
i=1

t2i

<

n∑
i=1

ti −
(

1

α+ 1

)(
t21 + t22

)
= 2α−

(
1

α+ 1

)(
9

8
α2

)
≤ (α− 1)(1) = Ux∗bb.

The last inequality holds because α ≥ 17. It is clear that x∗ satisfies the coupling constraints (1e).
The i, j-separator inequalities (8b) obviously hold for most variables x∗ij , because most of them are
zero or have i = j. The only nontrivial case is when j = b. In this case, every minimal i, b-separator
is of the form C = {v, v′} or C = {hv}, and both have x∗ib ≤ 1 =

∑
c∈C x

∗
cb. So, x∗ satisfies all

inequalities (8b), and thus satisfies all constraints defining PCUT.
Now, to show NP-hardness, we must demonstrate that (t1, t2, . . . , tn) is a “yes” instance of

Partition if and only if there is an inequality defining PLCUT that x∗ violates.
( =⇒ ) Suppose that (t1, t2, . . . , tn) is a “yes” instance of Partition, meaning that there is a

subset C ⊂ [n] such that
∑

i∈C ti =
∑

i∈[n]\C ti. We argue that C is a length-U a, b-separator in G
and that x∗ violates the associated inequality. First, see that if a vertex i ∈ C is removed from G,
then any a, b-path must cross its copy i′ which will contribute pi′ towards the length of the path.
Thus, if C is removed, then every a, b-path will have length at least

∑
i∈C pi′ =

∑
i∈C ti = α = U+1.

That is, C is a length-U a, b-separator. Then, x∗ lies outside of PLCUT because

x∗ab = 1 >
α

α+ 1
=

1

α+ 1

∑
i∈C

ti =
∑
i∈C

ti
α+ 1

=
∑
i∈C

x∗ib.

( ⇐= ) For the other direction, suppose that there is an inequality defining PLCUT that x∗

violates. As we have shown, x∗ belongs to PCUT (and thus PHESS), so any violated inequality must
take the form xij ≤

∑
c∈C xcj where i 6= j. Observe that C must be a length-U i, j-separator and

not just an i, j-separator (by x∗ ∈ PCUT), so there exists an i, j-path in G − C, but its length is
more than U . Without loss of generality, we suppose that C is a minimal length-U i, j-separator.

Claim 2. j = b.

Proof. The claim follows because if j 6= b, then x∗ij = 0 ≤
∑

c∈C x
∗
cj . �

Claim 3. C contains no vertices from the middle row {a, h2, h3, . . . , hn, b}.

Proof. If C contains a vertex v from the middle row, then x∗ib ≤ 1 = x∗vb ≤
∑

c∈C x
∗
cb, and x∗

satisfies the length-U i, b-separator inequality for C. �
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Claim 4. C contains no vertices from the bottom row {1′, 2′, . . . , n′}.

Proof. For contradiction purposes, suppose that C contains a vertex v′ from the bottom row. Let
C ′ := C \ {v′} and consider a shortest i, b-path P ′ in G − C ′. This path P ′ cannot cross v′, for if
it did then replacing v′ by its upper counterpart v gives a shorter path P of length

length(P ) = length(P ′) + pv − pv′ = length(P ′) + 0− tv < length(P ′).

Thus, P ′ also belongs to G − C, implying that distG−C′,p(i, b) = distG−C,p(i, b). Recalling that
distG−C,p(i, b) > U as C is a length-U i, b-separator, we see distG−C′,p(i, b) = distG−C,p(i, b) > U .
Consequently, C ′ is also a length-U i, b-separator, contradicting the minimality of C. �

Claim 5. The inequalities α ≤ pi +
∑

c∈C tc and (α+ 1)
∑

c∈C x
∗
cb ≥ (α− pi) hold.

Proof. By Claims 3 and 4, C ⊆ [n]. By minimality of C, i must be somewhere to the left of the
C vertices in Figure 10. So, every i, b-path must cross i and the lower counterparts C ′ of C, and
thus has length at least pi + p(C ′). Meanwhile, a path P of the same length can be constructed by
moving from left to right, opting for v ∈ [n] when it is available (v /∈ C) and taking v′ otherwise.
Thus, P is a shortest i, b-path in G− C, and

α = U + 1 ≤ distG−C,p(i, b) = pi + p(C ′) = pi +
∑
c∈C

tc = pi + (α+ 1)
∑
c∈C

x∗cb. �

�

Claim 6. Vertex i cannot belong to the top row {1, 2, . . . , n}.

Proof. If i ∈ {1, 2, . . . , n}, we arrive at the following contradiction.

(3/4)α ≥ ti = (α+ 1)x∗ib > (α+ 1)
∑
c∈C

x∗cb ≥ α > (3/4)α.

The first inequality holds by special class of partition instances that we reduce from. The second
inequality holds by the assumption. The third inequality holds by Claim 5 and pi = 0. �

Claim 7. (t1, t2, . . . , tn) is a “yes” instance of Partition.

Proof. By Claim 6, either i ∈ {a, h2, ..., hn} or i ∈ {1′, 2′, . . . , n′}. In the former case,

1 = x∗ib >
∑
c∈C

x∗cb =
∑
c∈C

tc
α+ 1

, (18)

implying that α+ 1 >
∑

c∈C tc and so

α+ 1 >
∑
c∈C

tc =
∑
c∈C

tc + pi ≥ α, (19)

where the last inequality holds by Claim 5. Because all terms of (19) are integers, it follows that∑
c∈C tc = α. Thus, C is a solution to the partition instance. In the latter case, i belongs to the

bottom row {1′, 2′, . . . , n′}. Let j ∈ {1, 2, . . . , n} be its upper counterpart. Then,

1− tj
α+ 1

= x∗ib >
∑
c∈C

x∗cb =
∑
c∈C

tc
α+ 1

. (20)
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implying that α+ 1− tj >
∑

c∈C tc and so

α+ 1 >
∑
c∈C

tc + tj =
∑
c∈C

tc + pi ≥ α, (21)

where the last inequality holds by Claim 5. Because all terms of (21) are integers, it follows that∑
c∈C tc + tj = α. Thus, C ∪ {j} is a solution to the partition instance. �
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