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Abstract

In many network applications, one searches for a connected subset of vertices that
exhibits other desirable properties. To this end, this paper studies the connected subgraph
polytope of a graph, which is the convex hull of subsets of vertices that induce a connected
subgraph. Much of our work is devoted to the study of two nontrivial classes of valid
inequalities. The first are the a, b-separator inequalities, which have been successfully used
to enforce connectivity in previous computational studies. The second are the indegree
inequalities, which have previously been shown to induce all nontrivial facets for trees. We
determine the precise conditions under which these inequalities induce facets and when
each class fully describes the connected subgraph polytope. Both classes of inequalities
can be separated in polynomial time and admit compact extended formulations. However,
while the a, b-separator inequalities can be lifted in linear time, it is NP-hard to lift the
indegree inequalities.

Keywords: connected subgraph polytope; maximum-weight connected subgraph; prize-
collecting Steiner tree; contiguity;

1 Introduction

In many clustering and network analysis applications, one searches for a connected subset of
vertices that exhibits other desirable properties. To this end, this paper studies the connected
subgraph polytope of a graph, which is the convex hull of subsets of vertices that induce a
connected subgraph. This serves as a basic model of connectivity which can provide insights
into more constrained problems.

In this paper, we consider a simple graph G = (V,E) and usually let n = |V | and m = |E|.
The neighborhood of a vertex v is N(v) := {w ∈ V | {v, w} ∈ E}. We consider 0-vertex and
1-vertex graphs to be connected.

Definition 1. The connected subgraph polytope of a graph G = (V,E) on n vertices is

P(G) := conv
{
xS ∈ {0, 1}n | G[S] is connected

}
,

where xS denotes the characteristic vector of S ⊆ V .
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This requirement of induced connectivity is common in a variety of applications: the
construction of virtual backbones for wireless sensor networks [6, 11], cluster detection in
social network analysis [20, 27] and bioinformatics [3, 4, 10], forest harvesting [7], political
districting [14], energy distribution [18], and computer vision [8, 26]. It also appears in
resource scheduling problems when enforcing “contiguous ones” in a binary decision vector
(here, G is a path graph). For an excellent introduction to modeling induced connectivity
constraints in integer programs, consult [7] and the references therein.

It is important to distinguish these connectivity constraints from those encountered in
other network design problems. Many times, one is tasked with choosing edges to meet some
vertex- or edge-connectivity requirements among a set of vertices. For example, in the Steiner
tree problem one is tasked with choosing a minimum-cost subset of edges to connect a subset
of specified terminals. In several other network design problems, edges are chosen to meet
some edge-connectivity or vertex-connectivity constraints for the entire vertex set. For many
of these problems, there are thorough polyhedral studies [23].

However, the connected subgraph polytope is not nearly as well-studied. One can find
integer programming formulations for induced connectivity [1, 2] and for the related prize-
collecting Steiner tree problem [18,19], but these papers work in a higher-dimensional space
and the work is focused more on developing effective branch-and-cut algorithms.

In contrast, this paper is devoted to developing a thorough understanding of the facial
structure of the connected subgraph polytope in the original space of variables. This is
motivated, in part, by recent computational successes [6, 7, 13] that rely on vertex variables
and a, b-separator inequalities to impose connectivity constraints.

(a, b-separator inequality) xa + xb −
∑
i∈C

xi ≤ 1.

Here, a and b are nonadjacent vertices and C ⊆ V \ {a, b} is an a, b-separator, i.e., there is
no path from a to b in G− C.

This focus on vertex variables has proven useful in a variety of contexts. Carvajal et al. [7]
handle forest planning instances two to three times as large as previous studies. Buchanan et
al. [6] solve, in ten seconds, more instances of the minimum connected dominating set prob-
lem than any previous approach could solve in an hour. Fischetti et al. [13] solve, in seconds,
benchmark instances of Steiner tree problems that were never solved by previous approaches
“even after days of computation.” Despite these significant computational improvements,
fundamental questions about induced connectivity polyhedra remain unanswered. For exam-
ple, when do the a, b-separator inequalities induce facets? We answer this and many other
questions about the a, b-separator inequalities.

We also consider a class of valid inequalities called indegree inequalities. These inequalities
are interesting because they have been shown to induce all nontrivial facets of P(G) when
G is a tree [17]. As far as we know, no one has studied them for arbitrary graphs. They are
defined as follows. A vector d ∈ Rn is said to be an indegree vector if for some orientation of
G the indegree of each vertex v is dv. For each indegree vector d of G, there is a corresponding
indegree inequality.

(indegree inequality)
∑
i∈V

(1− di)xi ≤ 1.
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It turns out that these inequalities are valid for arbitrary graphs and can induce facets even
when G is not a tree.

There can be exponentially many a, b-separator and indegree inequalities. Often, this
leads researchers to develop branch-and-cut algorithms that rely on (hopefully) efficient sep-
aration algorithms. For this reason, it is important to study the separation problems asso-
ciated with these two classes of inequalities. The separation problem for the a, b-separator
inequalities can be solved in polynomial time by a standard reduction to the maximum flow
problem (as noted by, e.g., [13]). We show that the separation problem for the indegree
inequalities can be solved in linear time.

Another popular approach to handle a large number of inequalities in the original space
of variables is to search for small extended formulations. We provide positive results on this
front, showing that the feasible regions defined by the separator and indegree inequalities
admit polynomial-size extended formulations. Indeed, in the case of indegree inequalities,
there is a linear-size extended formulation. Thus, for any treeG, there is a linear-size extended
formulation for P(G), even though P(G) has 2n−1 + n facets [17].

Lifting is important when studying the connected subgraph polytope P(G) if one wants
to generate facets of P(G) from subgraphs of G. We show that the lifting problem associated
with the a, b-separator inequalities can be solved in linear time. However, we show that this
is not expected to be the case for the indegree inequalities. In fact, it is strongly NP-hard
even in very restricted classes of graphs.

Another natural question is—When do these classes of inequalities fully describe P(G)?
As mentioned earlier, the indegree inequalities have been shown to induce all nontrivial facets
for trees [17]. We generalize this result, showing that the indegree inequalities induce all facets
of P(G) (aside from nonnegativity bounds) if and only if G is a forest. We also show that
the a, b-separator inequalities induce all nontrivial facets of P(G) if and only if G has no
independent set of three vertices. This generalizes work of Biha et al. [5], who (essentially)
prove similar results for line graphs. These analytical results suggest that indegree inequalities
may be useful for sparse, treelike graphs, and separator inequalities may be useful for very
dense graphs. Our numerical experiments corroborate this intuition.

1.1 Our contributions

In Section 2, we study some fundamental properties of P(G), including its dimension and
when the trivial 0-1 bounds induce facets. We also show that all facets of P(G) can be derived
from its components’ polytopes and vice versa. In many cases, this simplifies our analysis, as
we can suppose that G is connected. Many of our proofs rely on lifting arguments, so we also
provide some background information about lifting. We also show that any facet-defining
inequality of P(G) has at most α(G) positive coefficients, where α(G) is the independence
number of G. This will prove useful later.

In Section 3, we study the a, b-separator inequalities. We show that, assuming the input
graph is connected, an a, b-separator inequality induces a facet if and only if the separator is
a minimal a, b-separator. We then show that one can lift a vertex into a separator inequality
in linear time. While there are exponentially many (facet-defining) separator inequalities, we
provide a compact extended formulation for a separator-based relaxation Q(G). Generalizing
a result of Biha et al. [5], we show that Q(G) and P(G) coincide precisely when the graph
has no independent set of three vertices, i.e., α(G) ≤ 2.
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In Section 4, we study the indegree inequalities. We show that they are valid for arbitrary
graphs. Moreover, they are facet-defining if and only if the oriented graph D satisfies the
property that if there is a directed s-t walk, then it is unique. (In particular, D should be
acyclic.) We show that lifting a vertex into a given indegree inequality is NP-hard. Then we
provide a linear-time algorithm to separate indegree inequalities and a linear-size extended
formulation for an indegree-based relaxation Q′(G). Generalizing results of [17], we show
that Q′(G) and P(G) coincide precisely when G is a forest.

In Section 5, we provide a brief set of numerical experiments. As expected, the indegree
inequalities provide strong relaxations when the graph is tree-like, and give poor LP bounds
when the graph is sufficiently dense. Similarly, the a, b-separator inequalities are very weak
for tree-like graphs, but the LP bound becomes stronger for denser graphs.

1.2 Preliminaries and related work

The connected subgraph polytope P(G) of a graphG has close connections with the maximum-
weight connected subgraph (MWCS) problem. Indeed, P(G) is essentially the feasible region
for the MWCS problem.

Problem: Maximum-Weight Connected Subgraph (MWCS).
Input: a graph G = (V,E), a weight wi (possibly negative) for each i ∈ V .
Output: a maximum-weight subset S ⊆ V such that G[S] is connected.

Here, the weight of a subset S ⊆ V of vertices is w(S) =
∑

i∈S wi.
The MWCS problem is NP-hard, even in planar graphs of maximum degree three with

all weights either +1 or −1 [16]. This suggests that P(G) must be “complicated” even in
very restricted classes of graphs.

We use the following lemma throughout the paper. It is rather simple, but since we use
it so often it is stated explicitly.

Lemma 1 (folklore). Let ax ≤ b and cx ≤ d be valid inequalities for a full-dimensional
polyhedron P such that (a, b) and (c, d) are not scalar multiples of each other. Then, the
aggregated inequality (a+ c)x ≤ (b+ d) cannot induce a facet of P .

For any other notation or necessary background knowledge on polyhedral theory and
graph theory, consult [9, 21,25].

In related work, Biha et al. [5] study the edge-induced connected subgraph polytope of a
graph G, which we will denote by PE(G). It is defined as the convex hull of edge subsets that
induce a connected subgraph. They show, among other things, that, for connected graphs G,
PE(G) is fully described by the 0-1 bounds and edge-based analogues of the a, b-separator
inequalities if and only if G has no matching of 3 edges. This is implied by our results through
the use of the line graph. Recall that the line graph L(G) of a graph G = (V,E) has vertex set
E and two vertices of L(G) are adjacent if the corresponding edges in G share an endpoint.
A graph H is said to be line if there exists a graph G such that H = L(G).

The result of Biha et al. can thus be stated in terms of our problem as follows. Supposing
G is a line graph, P(G) is fully described by the 0-1 bounds and a, b-separator inequalities
if and only if G has no independent set of three vertices. We note that their result does
not imply ours. For example, our result shows that the separator-based LP relaxation is
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not integral for the claw graph, but this graph is not a line graph, and thus their theorem
does not apply. Similarly, our results imply that the (vertex-induced) connected subgraph
polytope of the 6-vertex wheel graph is completely described by the 0-1 bounds and separator
inequalities, but again we cannot apply the theorem of Biha et al. since the 6-vertex wheel
is not line.

2 Fundamental Properties of the Connected Subgraph Poly-
tope

In this section, we describe fundamental properties of P(G), including when the 0-1 bounds
induce facets. Lifting arguments are a primary tool used in this paper’s proofs, so we also
provide some background information about lifting.

2.1 Trivial facets

Proposition 1 (dimension; 0-1 facets). The connected subgraph polytope P(G) of a graph
G = (V,E) is full-dimensional. Moreover, for each i ∈ V ,

1. xi ≥ 0 induces a facet, and

2. xi ≤ 1 induces a facet if and only if G is connected.

Proof. The usual n + 1 affinely independent points 0 and ei, i = 1, . . . , n suffice to show
full dimension. The points 0 and ej , j 6= i show that xi ≥ 0 induces a facet. When G is
connected, consider the vertices i = v1, v2, . . . , vn in a preordering (i.e., when first visited in
a depth-first search) starting from i. Then the n affinely independent points

∑k
j=1 evj for

k = 1, . . . , n show that xi ≤ 1 induces a facet. When G is not connected, then consider
a vertex j that belongs to a different component of G than i. Then the valid inequalities
xi + xj ≤ 1 and −xj ≤ 0 imply xi ≤ 1, meaning that, by Lemma 1, xi ≤ 1 cannot induce a
facet.

Lemma 2. Consider a facet-defining inequality
∑

i∈V πixi ≤ π0 of P(G). Then π0 ≥ 0.
Further, the inequality is (a scalar multiple of) some nonnegativity bound −xj ≤ 0 if and
only if π0 = 0.

Proof. As the empty set is assumed to induce a connected subgraph, π0 ≥ 0. The ‘only if’
direction is trivial, so suppose π0 = 0. Then πi ≤ 0 for each vertex i ∈ V (since the trivial
graphs are assumed to be connected). Further suppose that at least two coefficients are
negative, say πu and πv. Then

∑
i∈V πixi ≤ 0 is implied by the valid inequalities πuxu ≤ 0

and
∑

i∈V \{u} πixi ≤ 0 so (by Lemma 1)
∑

i∈V πixi ≤ 0 cannot be facet-defining.

2.2 Generating facets from components

Proposition 1 shows that the facets of P(G) depend on whether G is connected. We expound
upon this in the following theorem, showing that P(G) is determined by its components’
connected subgraph polytopes.

Theorem 1. Let {Gj = (Vj , Ej)}j be the (connected) components of a graph G = (V,E) and
consider π ∈ Rn and π0 > 0. The following are equivalent.
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1. For each Gj, the inequality
∑

i∈Vj πixi ≤ π0 induces a facet of P(Gj).

2. The inequality
∑

i∈V πixi ≤ π0 induces a facet of P(G).

Proof. The proof is relatively straightforward and is omitted.

The inequalities below are the so-called clique inequalities discussed by [7] in the context
of induced connectivity.

Corollary 1. If U ⊆ V contains exactly one vertex from each connected component of G,
then the inequality

∑
i∈U xi ≤ 1 induces a facet of P(G).

Proof. Let the components of G be {Gj = (Vj , Ej)}j . By Proposition 1, for any i ∈ U ∩ Vj ,
the inequality xi ≤ 1 induces a facet of P(Gj). Then, by Theorem 1,

∑
i∈U xi ≤ 1 induces

a facet of P(G).

Corollary 2. For a graph G = (V,E) and an independent set S ⊆ V , the inequality∑
i∈S xi ≤ 1 induces a facet of P(G[S]).

2.3 Basics of lifting

Corollary 2 shows that we can easily generate the facet-defining inequality
∑

i∈S xi ≤ 1 for
P(G[S]), where S is an independent set. However, we want facet-defining inequalities for
P(G), and this inequality is perhaps not even valid for P(G). Loosely speaking, lifting is
the procedure whereby this or other seed inequalities are altered so that they induce facets
of P(G).

Lemma 3 (Lifting zero-valued variables for P(G)). If the inequality
∑

i∈V \{v} πixi ≤ π0
induces a facet of P(G− v), then the inequality

(π0 − ζ)xv +
∑

i∈V \{v}

πixi ≤ π0

induces a facet of P(G), where

ζ = max
S⊆V

 ∑
i∈V \{v}

πix
S
i

∣∣∣∣∣∣ xSv = 1 and G[S] is connected

 .

Proof. This follows by well-known results (cf. Prop. 1.1 on p. 261 of [21]).

This lifting principle provides a way to generate facets for P(G) from facets of its sub-
graphs’ polytopes. A key idea is that this can be applied sequentially based on some lifting
order. This machinery is vital for our proofs.

Lemma 4 (Bounds on lifting). Suppose
∑

i∈V \{v} πixi ≤ π0 induces a facet of P(G−v) and
that π0 > 0. Then, when lifting in v, the objective ζ of the lifting problem satisfies:

1. if v is isolated, then ζ = 0;

2. if v is not isolated, then π0 ≤ ζ ≤ |N(v)|π0.
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Proof. If vertex v is isolated in the graph G = (V,E), then the only feasible solution is {v},
in which case ζ = 0. So, we will now suppose that N(v) 6= ∅.

Consider an optimal solution D ⊆ V to the lifting problem. Here, v ∈ D and G[D] is
connected. Suppose N(v) = {u1, . . . , us}. Partition D′ := D \ {v} into s (some possibly
empty) subsets as follows. Let D1 denote the set of vertices in D′ connected to u1 by some
path of G[D′]. Then for p = 2, . . . , s, let Dp denote the vertices of D′ \ (D1∪ · · · ∪Dp−1) that
are connected to up by some path in G[D′]. Each G[Dp] is a connected subgraph of G − v,
so by the validity of the seed inequality,∑

i∈V \{v}

πix
Dp

i =
∑
i∈Dp

πi ≤ π0,

implying that

ζ =
∑

i∈V \{v}

πix
D
i

=
s∑

p=1

∑
i∈Dp

πi

+
∑
i∈V \D

πix
D
i

≤ sπ0 + 0

= |N(v)|π0.

Now we show that ζ ≥ π0 when N(v) 6= ∅. Pick u ∈ N(v). Let G′ = (V ′, E′) be
the connected component of G − v that includes u. Then, by Theorem 1,

∑
i∈V ′ πixi ≤ π0

induces a facet of P(G′). Moreover, there must be at least one connected vertex subset
D ⊆ V ′ containing u for which

∑
i∈V ′ πix

D
i = π0, since otherwise the inequality could not

induce a facet. Then, G[D ∪ {v}] is connected and D has weight π0, so ζ ≥ π0.

2.4 The number of positive coefficients in a facet-defining inequality

Lemma 5. Suppose that
∑

i∈V πixi ≤ π0 is valid for P(G). If vertices u and v are adjacent
and πv ≥ 0, then the following inequality is also valid.

(πu + πv)xu + 0xv +
∑

i∈V \{u,v}

πixi ≤ π0.

Proof. Suppose that G[S] is connected, and consider the following two cases.

• If u ∈ S, then S′ = S ∪ {v} is also connected, so

(πu + πv)x
S
u + 0xSv +

∑
i∈V \{u,v}

πix
S
i

=(πu + πv)x
S′
u + 0xS

′
v +

∑
i∈V \{u,v}

πix
S′
i =

∑
i∈V

πix
S′
i ≤ π0.

• If u /∈ S, then since xSu = 0 and 0xSv ≤ πvxSv , we have

(πu + πv)x
S
u + 0xSv +

∑
i∈V \{u,v}

πix
S
i ≤

∑
i∈V

πix
S
i ≤ π0.
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Thus, the inequality is valid in both cases, and is valid in general.

Lemma 6. In a facet-defining inequality
∑

i∈V πixi ≤ π0 of P(G), no pair of adjacent
vertices can have positive coefficients.

Proof. Suppose that adjacent vertices u and v have positive coefficients. Then, by Lemma 5,
the following inequalities are valid.

(πu + πv)xu + 0xv +
∑

i∈V \{u,v}

πixi ≤ π0;

0xu + (πu + πv)xv +
∑

i∈V \{u,v}

πixi ≤ π0.

Multiplying the first inequality by β := πu/(πu + πv) and the second by 1 − β shows, by
Lemma 1, that

∑
i∈V πixi ≤ π0 cannot induce a facet.

Recall that the independence number α(G) of a graph G is the size of its largest inde-
pendent set.

Proposition 2. There is a facet-defining inequality of P(G) with α(G) positive coefficients.
None have more.

Proof. Let S be a maximum independent set of G. The first claim follows by lifting the
inequality

∑
i∈S xi ≤ 1, which induces a facet of P(G[S]) by Corollary 2. The second claim

follows by Lemma 6.

We show that the 0-1 bounds, on their own, provide an α(G) polyhedral approximation
of P(G).

Proposition 3. The inclusions P(G) ⊆ [0, 1]n ⊆ α(G)P(G) hold and are sharp.

Proof. The first inclusion is trivial. Consider x∗ ∈ [0, 1]n and a facet-defining inequality∑
i∈V πixi ≤ π0 of P(G). Let S = {i ∈ V | πi > 0}. If |S| = 0, then π0 = 0, since

otherwise no feasible point could satisfy it at equality. By Lemma 2, the inequality must be
a nonnegativity bound πjxj ≤ 0, so∑

i∈V
πix
∗
i = πjx

∗
j ≤ 0 = α(G)π0.

Now suppose |S| ≥ 1, implying π0 > 0. Then, by Lemma 6, S must be an independent set.
For each vertex i ∈ S, we have πi ≤ π0 and x∗i ≤ 1, so∑

i∈V
πix
∗
i ≤

∑
i∈S

πix
∗
i ≤ |S|π0 ≤ α(G)π0.

Thus x∗ ∈ α(G)P(G). The inclusions are sharp for complete graphs Kn.
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3 Separator Inequalities

In this section, we study the separator inequalities. We show that, assuming the graph is
connected, the a, b-separator inequality

(a, b-separator inequality) xa + xb −
∑
i∈C

xi ≤ 1

induces a facet of P(G) if and only if C is a minimal a, b-separator. The problem of lifting
a vertex into an a, b-separator inequality is shown to be linear-time solvable. Also, the
separation problem for these inequalities is polynomial-time solvable, meaning that we can
optimize over the linear programming relaxation Q(G) for P(G) in polynomial time via the
ellipsoid method [15].

Q(G) := {x ∈ [0, 1]n | x satisfies all separator inequalities} .

We also provide a compact extended formulation for Q(G) via multicommodity flows, so we
need not rely on the ellipsoid method to optimize over Q(G).

A natural question to ask is—when is formulation Q(G) tight, i.e., P(G) = Q(G)? We
show that this is the case precisely when the graph has no independent set of three vertices,
i.e., α(G) ≤ 2. This result is interesting, in part, because there can be exponentially many
inequalities defining Q(G) even when α(G) = 2. An example is shown in Figure 1, where
the vertices within each rectangle form a clique. A minimal a, b-separator can be created by
choosing, for each i, one vertex from {ci, di}. The number of such separators is 2n/2−1.

a b

c1

c2

c3

cn
2
−1

d1

d2

d3

dn
2
−1

Figure 1: A graph G with α(G) = 2, but many minimal a, b-separators. Vertices within a
rectangle form a clique.

3.1 Separator facets

We provide a good characterization for when an a, b-separator inequality induces a facet.
Recall that an a, b-separator is said to be minimal if no proper subset of it is an a, b-separator.

Theorem 2 (a, b-separator facets). Consider a connected graph G = (V,E); distinct, non-
adjacent vertices a and b; and a vertex subset C ⊆ V \ {a, b}. Then, the inequality

xa + xb −
∑
i∈C

xi ≤ 1 (1)
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induces a facet of P(G) if and only if C is a minimal a, b-separator.

Proof. ( =⇒ ) Suppose that C is not an a, b-separator. Then there exists a path from a
to b in G − C. Let P be the set of vertices in the path (including a and b). Then G[P ] is
connected, but

xPa + xPb −
∑
i∈C

xPi = xPa + xPb = 2 > 1,

so xa+xb−
∑

i∈C xi ≤ 1 is not valid. This shows that C is an a, b-separator. Now suppose C
is not a minimal a, b-separator. Then there exists c ∈ C such that C \{c} is an a, b-separator.
Then, by Lemma 1, the two valid inequalities −xc ≤ 0 and xa + xb −

∑
i∈C\{c} xi ≤ 1 show

that inequality (1) cannot induce a facet. This shows that C is a minimal a, b-separator.

(⇐= ) Suppose that C is a minimal a, b-separator and define

A := {v ∈ V | v and a belong to the same component of G− C}
B := {v ∈ V | v and b belong to the same component of G− C}
D := V \ (A ∪B ∪ C).

The proof continues by sequential lifting; we provide only a brief sketch. First, xa+xb ≤ 1
induces a facet of P(G[A∪B]) by Corollary 1. Then, xa + xb−

∑
i∈C xi ≤ 1 induces a facet

of P(G[A∪B ∪C]), by lifting in the vertices of C arbitrarily. Finally, xa +xb−
∑

i∈C xi ≤ 1
induces a facet of P (G) = P (G[A∪B ∪C ∪D]), by lifting in the vertices of D based on their
distance from (a vertex of) C; specifically, lift closer vertices first.

3.2 Lifting separator inequalities in linear time

Suppose that we have a facet-defining a, b-separator inequality xa + xb −
∑

i∈C xi ≤ 1 for
P(G − v), and that we want to lift in vertex v so that the inequality induces a facet of
P(G). Consider the following algorithm, recalling that the coefficient for variable xv will be
πv = π0 − ζ = 1− ζ.

1. let A := {i ∈ V | i and a belong to the same component of G− C};

2. let B := {i ∈ V | i and b belong to the same component of G− C};

3. if N(v) = ∅, then return ζ = 0;

4. if A 6= B, then return ζ = 1;

5. if A = B, then return ζ = 2.

Proposition 4. The above algorithm (optimally) lifts vertex v into a given a, b-separator
inequality in linear time.

Proof. Since we can construct sets A and B in linear time via breadth-first search, the
algorithm runs in linear time. If N(v) = ∅, then ζ = 0 by Lemma 4, so the algorithm is
correct. So suppose N(v) 6= ∅, and consider two cases.
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In the first case, suppose that v ∈ A and v ∈ B. Thus A = B. Further, A is connected
with weight 2 and contains v, so ζ ≥ 2. The reverse inequality is easy to see, so ζ = 2, and
the algorithm is correct.

In the second case, suppose that v /∈ A or v /∈ B. Thus C is an a, b-separator for G, so
A 6= B and ζ ≤ 1. The inequality ζ ≥ 1 follows by Lemma 4, so ζ = 1, and the algorithm is
correct.

3.3 A compact extended formulation for the separator-based relaxation

Again, consider a simple graph G = (V,E). Denote by E the set of all directed edges (u, v) and
(v, u) whose undirected counterparts {u, v} belong to E. Order the vertices of G arbitrarily,
and denote by E the set of ordered pairs (a, b) of nonadjacent vertices for which a appears
before b in the vertex ordering. The polytope F (G) is the set of all (x, f) satisfying the
following constraints.

−xi +
∑
j∈N(i)

fabij ≤ 0, ∀i ∈ V, ∀(a, b) ∈ E (2)

xa + xb −

 ∑
j∈N(a)

fabaj −
∑

j∈N(a)

fabja

 ≤ 1, ∀(a, b) ∈ E (3)

∑
j∈N(i)

fabji −
∑
j∈N(i)

fabij = 0, ∀i ∈ V \ {a, b}, ∀(a, b) ∈ E (4)

0 ≤ fabij ≤ 1, ∀(i, j) ∈ E , ∀(a, b) ∈ E (5)

0 ≤ xi ≤ 1, ∀i ∈ V. (6)

Proposition 5. The separator-based relaxation Q(G) for P(G) admits an extended formu-
lation of size O(n2(m+ n)). Indeed, projx(F (G)) = Q(G).

Proof. The equality projx(F (G)) = Q(G) holds by max-flow/min-cut ideas, and the size is
easy to see.

3.4 When the separator-based relaxation is tight

This subsection is devoted to proving the following theorem, which generalizes a result of
Biha et al. [5].

Theorem 3. The equality P(G) = Q(G) holds if and only if α(G) ≤ 2.

As a consequence of Theorem 3 and the ability to optimize over Q(G) in polynomial time,
we have the following corollary.

Corollary 3. If α(G) ≤ 2, then the MWCS problem is polynomial-time solvable.

One direction of the proof of Theorem 3 is easier and is shown first.

Lemma 7. If P(G) = Q(G), then α(G) ≤ 2.

11



Proof. By the contrapositive. Suppose that G has an independent set S of three vertices. By
Proposition 2, there is a facet-defining inequality of P(G) that has three positive coefficients,
but this is not true for Q(G). Each of P(G) and Q(G) has a unique half-space representation
(up to scalar multiples) since they are full-dimensional, but we have seen that the facets of
Q(G) and P(G) are different, so P(G) 6= Q(G).

The converse is more complicated and requires two lemmata.

Lemma 8. Suppose that
∑

i∈V πixi ≤ π0 induces a facet of P(G). If πu and πv are its only
positive coefficients, then πu = πv = π0.

Proof. Since G[{u}] and G[{v}] are connected, this implies that πu ≤ π0 and πv ≤ π0. If
πu + πv ≤ π0, then any 0-1 solution x∗ ∈ P(G) satisfying the inequality at equality must
have x∗u = x∗v = 1, implying that the face of P(G) where

∑
i∈V πixi = π0 has dimension at

most n − 2, meaning that the inequality cannot induce a facet. Thus, we will assume that
πu + πv > π0.

We claim that S := {i ∈ V | πi < 0} is a u, v-separator. Suppose not, then there exists
a path from u to v in G[V \ S]. Let P be the set vertices in the path. This implies that∑

i∈V πix
P
i = πu + πv > π0, which contradicts the validity of

∑
i∈V πixi ≤ π0.

For contradiction purposes, suppose that at least one of πu and πv is less than π0. Without
loss of generality, suppose that πu < π0. Now, let S′ ⊆ S be a minimal u, v-separator, and
define

πmax := max{πi | i ∈ S′}

ε :=
1

2
min{−πmax, π0 − πu}.

Note that πmax < 0 and π0 − πu > 0, so ε > 0. Also, πu + ε < π0, and for every i ∈ S′,
we have πi + ε < 0. Further, let

R = V \ (S′ ∪ {u, v}).

Then consider the following inequalities.

(πu + ε)xu + πvxv +
∑
i∈S′

(πi − ε)xi +
∑
i∈R

πixi ≤ π0 (7)

(πu − ε)xu + πvxv +
∑
i∈S′

(πi + ε)xi +
∑
i∈R

πixi ≤ π0. (8)

If these inequalities were valid, then they would imply
∑

i∈V πixi ≤ π0, thus showing (by
Lemma 1) that

∑
i∈V πixi ≤ π0 cannot induce a facet, a contradiction. The rest of the proof

is devoted to showing that inequalities (7) and (8) are indeed valid when πu < π0.
Consider D ⊆ V such that G[D] is connected. There are two cases. In the first case,

|D ∩ {u, v}| ≤ 1. Then, since πi ≤ 0 for any i ∈ R ⊆ V \ {u, v} and πi − ε < πi + ε < 0 for
any i ∈ S′,

(πu + ε)xDu + πvx
D
v +

∑
i∈S′

(πi − ε)xDi +
∑
i∈R

πix
D
i

≤ (πu + ε)xDu + πvx
D
v

≤ max{πu + ε, πv} ≤ π0.

12



The same logic shows that inequality (8) is valid when |D ∩ {u, v}| ≤ 1.
In the second case, |D ∩ {u, v}| = 2. Since S′ is a u, v-separator and both u and v belong

to D, there exists w ∈ D ∩ S′. Then, since πi ≤ 0 for any i ∈ R ⊆ V \ {u, v}, we have

(πu + ε)xDu + πvx
D
v +

∑
i∈S′

(πi − ε)xDi +
∑
i∈R

πix
D
i

≤ (πu + ε)xDu + πvx
D
v + (πw − ε)xDw +

∑
i∈S′\{w}

πix
D
i +

∑
i∈R

πix
D
i

= πux
D
u + πvx

D
v +

∑
i∈V \{u,v}

πix
D
i

=
∑
i∈V

πix
D
i ≤ π0.

Thus, inequality (7) is valid when |D ∩ {u, v}| = 2.
Finally, we show that inequality (8) is valid when |D ∩ {u, v}| = 2. Since u and v belong

to D and G[D] is connected, there is a path from u to v in G[D]. Moreover, at least one
of these u-v paths crosses only one vertex, say w, from S′ ∩ D. This holds by minimality
of S′. Let P be the set of vertices in this particular u-v path. Then, since πi ≤ 0 for any
i ∈ R ⊆ V \ {u, v}, and πi + ε < 0 for any i ∈ S′, we have

(πu − ε)xDu + πvx
D
v +

∑
i∈S′

(πi + ε)xDi +
∑
i∈R

πix
D
i

= (πu − ε)xDu + πvx
D
v + (πw + ε)xDw +

∑
i∈S′\{w}

(πi + ε)xDi +
∑
i∈R

πix
D
i

≤ (πu − ε)xDu + πvx
D
v + (πw + ε)xDw +

∑
i∈R∩P

πix
D
i

= πux
P
u + πvx

P
v + πwx

P
w +

∑
i∈R∩P

πix
P
i

=
∑
i∈V

πix
P
i ≤ π0.

Lemma 9. If a facet-defining inequality
∑

i∈V πixi ≤ π0 of P(G) has exactly two positive
coefficients, then it is a separator inequality.

Proof. Let the positive coefficients be πa and πb. By Lemma 8, πa = πb = π0. Define

C = {i ∈ V | πi = −π0}
S = {i ∈ V | − π0 < πi < 0}
R = {i ∈ V | πi < −π0}.

We claim that R = ∅. If not, there is a vertex v ∈ R, and no subset S of vertices that
contains v can have weight π0. Thus all points on the face where the inequality holds at
equality also belong to the face where −xv ≤ 0, but this cannot happen.

13



Thus, we can write the facet-defining inequality as

π0xa + π0xb −
∑
i∈C

π0xi +
∑
i∈S

πixi ≤ π0. (9)

Now see that C ∪ S must be an a, b-separator. If not, then there is a path P from a to b
in G[V \ (C ∪ S)], yielding the contradiction that

2π0 = πa + πb =
∑
i∈V

πix
P
i ≤ π0.

If S = ∅, then inequality (9) is an a, b-separator inequality, as desired. So suppose that
S 6= ∅ and consider the following subsets of vertices.

A = {v ∈ V | v and a belong to the same component of G[V \ (C ∪ S)]}
B = {v ∈ V | v and b belong to the same component of G[V \ (C ∪ S)]}
SA = {s ∈ S | N(s) ∩A 6= ∅}
SB = {s ∈ S | N(s) ∩B 6= ∅}.

We argue that SA∩SB = ∅. Otherwise, for any vertex v ∈ SA∩SB, the set D := A∪B∪{v}
is connected, so

2π0 + πv =
∑
i∈V

πix
D
i ≤ π0.

This implies that πv ≤ −π0, which contradicts that v ∈ S. Thus, the three sets SA, SB, and
S \ (SA ∪ SB) partition S.

We claim that SA ∪ SB 6= ∅. For contradiction purposes, suppose that SA = SB = ∅.
Then C is an a, b-separator, so π0xa + π0xb −

∑
i∈C π0xi ≤ π0 is valid, and, for i ∈ S, the

inequality πixi ≤ 0 is valid. Then, by Lemma 1, inequality (9) cannot induce a facet. Thus
SA ∪ SB 6= ∅.

Now, choose an ε > 0 such that πi + ε ≤ 0 for each i ∈ SA ∪SB. We show that inequality
(10) below is valid; the proof for inequality (11) is similar.∑

i∈V \(SA∪SB)

πixi +
∑
i∈SA

(πi + ε)xi +
∑
i∈SB

(πi − ε)xi ≤ π0 (10)

∑
i∈V \(SA∪SB)

πixi +
∑
i∈SA

(πi − ε)xi +
∑
i∈SB

(πi + ε)xi ≤ π0. (11)

Suppose that D ⊆ V induces a connected subgraph. If a /∈ D or b /∈ D, then inequality
(10) holds, so suppose a, b ∈ D. Now, if D ∩ C 6= ∅, then∑

i∈V \(SA∪SB)

πix
D
i +

∑
i∈SA

(πi + ε)xDi +
∑
i∈SB

(πi − ε)xDi

≤ π0xDa + π0x
D
b −

∑
i∈C

π0x
D
i ≤ π0.
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Now suppose D ∩ C = ∅. Consider a shortest path from a to b in G[D] measured in terms
of the number of vertices used from S ∩D. Let P be the vertices along this path. Note that
|P ∩ SA| = |P ∩ SB| = 1, so∑

i∈V \(SA∪SB)

πix
D
i +

∑
i∈SA

(πi + ε)xDi +
∑
i∈SB

(πi − ε)xDi

≤
∑

i∈V \(SA∪SB)

πix
P
i +

∑
i∈SA

(πi + ε)xPi +
∑
i∈SB

(πi − ε)xPi

=
∑
i∈V

πix
P
i ≤ π0.

So, in both cases, inequality (10) is valid.
Thus inequalities (10) and (11) are valid. But, by Lemma 1, this contradicts that inequal-

ity (9) induces a facet. So, S = ∅, and inequality (9) is (a scalar multiple of) an a, b-separator
inequality.

Lemma 10. If α(G) ≤ 2, then P(G) = Q(G).

Proof. Consider an arbitrary facet-defining inequality
∑

i∈V πixi ≤ π0 of P(G). Let S =
{i ∈ V | πi > 0}. By Proposition 2, |S| ≤ α(G) ≤ 2. Consider the following three cases.
In each case, we show that the inequality (or a scalar multiple thereof) is already in the
description of Q(G).

In the first case, suppose |S| = 0. Recall that π0 ≥ 0 by Lemma 2. Since no variable has a
positive coefficient, π0 cannot be positive, since otherwise no point in P(G) could satisfy the
inequality at equality. Thus π0 = 0. Then, by Lemma 2, the inequality is a (scalar multiple
of a) nonnegativity bound.

In the second case, |S| = 1, and suppose S = {j}. Then, π0 ≥ πj > 0, since G[{j}] is
connected. Further, π0 = πj , since otherwise no point in P(G) satisfies the inequality at
equality. Now, the inequality πjxj ≤ π0 is valid, and 0xj +

∑
i∈V \{j} πixi ≤ 0 is valid since

πi ≤ 0 for every i ∈ V \ {j}. If πi = 0 for every i ∈ V \ {j}, then
∑

i∈V πixi ≤ π0 is a scalar
multiple of xj ≤ 1, as desired. Otherwise, there is vertex k ∈ V \ {j} with πk < 0. Then the
inequality 0xj +

∑
i∈V \{j} πixi ≤ 0 discussed previously is not the 0x ≤ 0 inequality, and it,

along with πjxj ≤ πj implies
∑

i∈V πixi ≤ π0, so by Lemma 1, the inequality
∑

i∈V πixi ≤ π0
cannot induce a facet, a contradiction.

In the third and final case, |S| = 2. Then, by Lemma 9, the facet-defining inequality is a
separator inequality.

Thus, in every case, the facet-defining inequality
∑

i∈V πixi ≤ π0 of P(G) is already a
part of the description of Q(G). Thus Q(G) ⊆P(G). The reverse inclusion holds since Q(G)
is a relaxation for P(G), so P(G) = Q(G).

4 Indegree Inequalities

In this section, we study the indegree inequalities. For a graph G = (V,E), a vector d ∈ Rn
is said to be an indegree vector if for some orientation D = (V,A) of G the indegree of each
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vertex v is dv. For each indegree vector d of G, there is a corresponding indegree inequality.

(indegree inequality)
∑
i∈V

(1− di)xi ≤ 1. (12)

The indegree inequalities are interesting because of the following theorem.

Theorem 4 (Theorem 3.6 on p. 168 of [17]). If G = (V,E) is a tree, then the following
equality holds.

P(G) =
{
x ∈ Rn+

∣∣ x satisfies all indegree inequalities
}
. (13)

Moreover, each of the indegree inequalities induces a facet when G is a tree.

Lemma 11. The indegree inequalities are valid for P(G) for arbitrary G.

Proof. The proof for arbitrary G is the same as for trees [17]. Suppose that S ⊆ V induces
a connected subgraph. This implies that the number of edges with both endpoints in S is at
least |S| − 1. Hence, for any indegree vector d, we have

∑
i∈S di ≥ |S| − 1, implying that∑

i∈V
(1− di)xSi = |S| −

∑
i∈S

di ≤ |S|+ (1− |S|) = 1.

We note that the indegree inequalities can be facet-defining, even when the graph G has
undirected cycles. For example, consider the 4-vertex cycle graph

C4 = ([4], {{1, 2}, {2, 3}, {3, 4}, {1, 4}}) .

If we orient the edges away from vertices 1 and 3, we get the facet-defining indegree inequality
x1 − x2 + x3 − x4 ≤ 1. However, if we orient the edges into a directed cycle, then we get
the inequality 0x1 + 0x2 + 0x3 + 0x4 ≤ 1 which is not facet-defining. If we orient the edges
away from vertex 1 and towards vertex 3, then we get the inequality x1 + 0x2−x3 + 0x4 ≤ 1,
which is also not facet-defining. This is illustrated in Figure 2. Later we will provide the

1

2

4

3 1

2

4

3 1

2

4

3

Figure 2: Orientations of C4. The leftmost orientation leads to a facet; the others do not.

exact conditions for an indegree inequality to induce a facet. We also show that the separation
problem for these inequalities is polynomial-time solvable. In fact, we can find a most-violated
inequality in linear time.

Consider the polyhedron Q′(G) defined by the indegree inequalities and nonnegativity
bounds. It is a relaxation for P(G) by Lemma 11.

Q′(G) :=
{
x ∈ Rn+

∣∣ x satisfies all indegree inequalities
}

We provide a linear-size extended formulation F ′(G) for Q′(G), so we need not rely on the
ellipsoid method to optimize over it. We also show that the equality P(G) = Q′(G) holds if
and only if G is a forest.
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4.1 Indegree facets

In the following, a subset of vertices is said to be tight for an inequality if its characteristic
vector satisfies it at equality.

Lemma 12. Suppose that S ⊆ V induces a connected subgraph of G. Then, S is tight for an
indegree inequality if and only if

1. S induces a tree in G; and

2. each edge of E having exactly one endpoint in S is oriented out of S.

Proof. (⇐= ) Since S induces a tree in G, the number of edges with both endpoints in S is
|S|−1. Hence these edges contribute |S|−1 to the sum

∑
i∈S di. The edges with one endpoint

in S do not contribute to this sum, as they are oriented away from S. Thus
∑

i∈S di = |S|−1,
meaning that ∑

i∈V
(1− di)xSi =

∑
i∈S

(1− di) = |S| − (|S| − 1) = 1.

( =⇒ ) It is straightforward to show that if G[S] is not a tree, or if one of the edges is
directed towards S, then the quantity

∑
i∈V (1−di)xSi is at most zero, in which case S cannot

be tight.

Lemma 13. If there are two directed s-t walks in the orientation D = (V,A) of G, then the
corresponding indegree inequality does not induce a facet of P(G).

Proof. For the indegree inequality to induce a facet, there must be a tight set S, containing t,
such that G[S] is connected. We argue that the vertices along the two s-t walks must belong
to S. Suppose not, then not all edges with one endpoint in S point away from S, so, by
Lemma 12, S is not a tight set, a contradiction. Thus all vertices along these two s-t walks
belong to S. However, this shows that S does not induce a tree in G, which, by Lemma 12,
contradicts that S is a tight set. Thus no such S exists, and the indegree inequality cannot
induce a facet.

As a consequence of Lemma 13, if D has a directed cycle, then the corresponding indegree
inequality cannot induce a facet.

Theorem 5. The indegree inequality corresponding to an orientation D = (V,A) of G induces
a facet of P(G) if and only if for every u, v ∈ V there is at most one directed u-v walk in D.

Proof. The ‘only if’ direction of the proof follows by Lemma 13. To show the ‘if’ direction,
consider an orientation D = (V,A) of G satisfying the assumptions. In this case, D is acyclic,
so there exists a topological ordering of its vertices. We prove that the inequality is facet-
defining by lifting in the vertices according to the topological ordering. We will start with
the seed inequality xw ≤ 1, where w is the first vertex in the topological ordering. We claim
that each time a vertex v is lifted into the inequality, the lifting problem objective ζv is dv,
meaning that πv = π0 − dv = 1 − dv, in which case the resulting facet-defining inequality is
the desired indegree inequality. For each vertex v, let

Dv := {v} ∪ {u ∈ V | there is a directed u-v path in D}.
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We use induction on the position of the vertex in the topological ordering. If v is first in
the topological ordering, we have our seed inequality xv ≤ 1. Now suppose that v is not first
in the topological ordering. Note that each u ∈ Dv \ {v} is earlier than v in the topological
ordering and G[Dv] is connected, so Dv is feasible when lifting in v. We argue that G[Dv] is a
tree. If it is not the case, there is an undirected cycle subgraph (V ′, E′) of G[Dv]. Let a and
b be the first and the last vertices of V ′, respectively, in the topological ordering. Then there
are two directed a-b paths in the orientation of (V ′, E′), hence there are at least two directed
a-b paths in D, which contradicts the assumption. Now, since G[Dv] is a tree and by the
induction assumption that πu = π0 − ζu = 1− du for vertices u prior to v in the topological
ordering, ∑

u∈Dv\{v}

πu =
∑

u∈Dv\{v}

(1− du) = (|Dv| − 1)− (|E(G[Dv])| − dv) = dv.

So ζv ≥ dv. Meanwhile, by Lemma 4, ζv ≤ dv, so ζv = dv as desired.

It is natural to ask—Given a graph, does there exist a facet-defining indegree inequality?
In other words, does the graph admit an orientation satisfying the conditions of Theorem 5?
We will call this Multitree Orientation.

Problem: Multitree Orientation.
Input: a simple graph G = (V,E).
Question: Is there an orientation of G in which, for every s, t ∈ V , there is at most one
(directed) s-t walk?

We have been unable to find a “good characterization” for when there is a facet-defining
indegree inequality. The following theorem explains why.

Theorem 6 (Eppstein [12]). Multitree Orientation is NP-complete.

Corollary 4. Given a graph G = (V,E), it is NP-complete to determine whether there is a
facet-defining indegree inequality of P(G).

Proof. Follows immediately from Theorems 5 and 6.

In contrast, the same problem for the separator inequalities is easy.

4.2 Lifting indegree inequalities is NP-hard

One may wonder how difficult it is to generate a facet-defining inequality for P(G) via a
specified lifting order. We show that this problem is hard even when the seed inequality is a
facet-defining indegree inequality.

Theorem 7. Lifting a vertex into an indegree inequality is strongly NP-hard. This holds
even when the graph is bipartite and 2-degenerate.

Proof. The reduction is from 3OCC-3SAT, a special case of 3SAT in which each variable
appears at most three times and each literal appears at most twice. This is NP-complete (cf.
Theorem 16.5 of [22]). Let the instance Φ =

∧m
j=1(c

1
j ∨c2j ∨c3j ) of 3OCC-3SAT be defined over
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c1j c2j c3j
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Figure 3: Variable gadget (left) and clause gadget (right)

variables x1, . . . , xn. We construct a graph G and a (facet-defining) indegree inequality for
P(G−v) for which the lifting problem for v has objective 2n+m if and only if Φ is satisfiable.

For each variable xi and for each clause cj in the 3OCC-3SAT instance, construct a gad-
get, as shown in Figure 3. Connect the gadgets as follows. Connect each literal xi(xi) from a
clause gadget (denoted by, say, c1j in Figure 3) to either a literal x1i or to x2i (x1i or x2i ) from
the corresponding variable gadget. Because each literal appears in at most two clauses, we
can suppose that no pair of clause vertices are connected to the same variable gadget literal.
This is illustrated in Figure 4. Finally, add a new vertex v and connect it to every clause
vertex of the type ckj and to all vertices of the type y1i , y

2
i , y

1
i , and y2i . Since the number of

vertices of G is only 12n+ 6m+ 1 the reduction is polynomial.
First see that G is bipartite, with partitions A and B:

A = {v} ∪

(
n⋃
i=1

{li, ri, bi, ti, x1i , x2i , x1i , x2i }

)
∪

 m⋃
j=1

{d1j , d2j , d3j}

 ;

B =

(
n⋃
i=1

{y1i , y2i , y1i , y2i }

)
∪

 m⋃
j=1

{c1j , c2j , c3j}

 .

Now we show G is 2-degenerate. Suppose not; then there is a subgraph H of G in which
all vertices have degree at least three. Then H cannot contain a vertex of the type dkj , li, ri, ti,
or bi, since these vertices have degree at most two in G. Now, if those vertices do not be-
long to H, then H cannot contain a vertex of the type y1i , y

2
i , y

1
i , y

2
i , or ckj . This implies that

V (H) ⊆ {v}∪
(⋃n

i=1{x1i , x2i , x1i , x2i }
)
, meaning that V (H) is independent, but this contradicts

that H has minimum degree at least three.
Consider the indegree inequality (14) for G − v that is obtained by orienting the edges

from A \ {v} to B. It induces a facet of P(G− v) by Theorem 5.∑
i∈A\{v}

xi −
∑
i∈B

2xi ≤ 1. (14)
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Figure 4: The construction of the graph G − v when given the 3OCC-3SAT instance Φ =
(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x4).

Now, consider the problem of lifting v into inequality (14), i.e., solving for

ζ := max
S⊆V

 ∑
i∈A\{v}

xSi −
∑
i∈B

2xSi

∣∣∣∣∣∣ xSv = 1 and G[S] is connected

 .

Claim 1: There is an optimal solution D ⊆ V to the lifting problem so that

• for each i, either {y1i , y2i } ⊆ D or {y1i , y2i } ⊆ D, but not both; and

• for each j, exactly one of c1j , c
2
j , and c3j belongs to D.

If an optimal solution D ⊆ V to the lifting problem does not fit these criteria, we modify it
so that it does. Recognize that v ∈ D and consider these six cases.

1. Three or more of {y1i , y2i , y1i , y2i } belong to D. Without loss of generality, suppose that
{y2i , y1i , y2i } ⊆ D, thus we can assume that x2i ∈ D. Then D′ = D\{y2i , x2i } is connected,
contains v, and has a larger weight than D, a contradiction.

2. Two of {y1i , y2i , y1i , y2i } belong to D. If either {y1i , y2i } ⊆ D or {y1i , y2i } ⊆ D, then Claim
1 is satisfied. Otherwise, without loss of generality, suppose that y1i and y1i belong to
D. Then ti cannot belong to D by connectivity. We can assume that x1i belongs to D.
Now, D′ = D ∪ {y2i , ti} \ {x1i , y1i } is connected, contains v, and has the same weight.

3. One of {y1i , y2i , y1i , y2i } belongs to D. Without loss of generality, suppose that y1i belongs
to D. Then D′ = D ∪ {y2i , ti, ri} is connected, contains v, and has the same weight.
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4. None of {y1i , y2i , y1i , y2i } belong to D. Then D′ = D ∪ {y1i , y2i , ti, bi, li, ri} is connected,
contains v, and has the same weight.

5. Two or more of {c1j , c2j , c3j} belong to D. Without loss of generality, suppose that

c1j , c
2
j ∈ D. We can assume that d1j , d

2
j , d

3
j ∈ D, and that c1j has a neighbor, say w ∈ A,

from a variable gadget and w also belongs to D. Then D′ = D\{c1j , d2j , w} is connected,
contains v, and has the same weight.

6. None of {c1j , c2j , c3j} belong to D. Then D′ = D ∪ {c1j , d1j , d2j} is connected, contains v,
and has the same weight.

These steps can be applied repeatedly until D satisfies the claim.
Claim 2: ζ ≤ 2n + m. Consider an optimal solution D ⊆ V to the lifting problem that

satisfies Claim 1. See that any weight +1 vertex in D must have a weight −2 neighbor in D.
There are 2n+m vertices of weight −2 in D and each has three weight +1 neighbors in G. So,

ζ =
∑

i∈A\{v}

xDi −
∑
i∈B

2xDi

=
∑

i∈A\{v}

xDi − 2(2n+m)

≤ 3(2n+m)− 2(2n+m) = 2n+m.

Claim 3: If Φ is satisfiable, then ζ ≥ 2n + m. Given a satisfying assignment x∗ for Φ,
construct a solution D to the lifting problem as follows.

• For each i: if x∗i = 1, choose y1i and y2i ; otherwise, select y1i and y2i . Note that this is,
in a sense, the opposite of the satisfying assignment.

• For each j: the satisfying assignment makes clause j evaluate to true by some literal,
say ckj ; choose vertex ckj and also the neighboring vertex from the variable gadget.

• Add v and all positive-weight vertices that neighbor a previously chosen vertex.

This solution D is feasible, since all negative-weight vertices are adjacent to v, and their
positive-weight neighbors were chosen. One negative-weight vertex was chosen from each
clause gadget, and two negative-weight vertices were selected from each variable gadget. So,
there are 2n+m vertices of negative weight in D. Each of these negative-weight vertices has
three positive-weight neighbors. All that remains is to demonstrate that no two negative-
weight vertices of D share a neighbor of positive weight. The proof of this is straightforward
but tedious, so we omit it. Thus D has weight (2n+m)(−2 + 3(1)) = 2n+m.

Claim 4: If ζ ≥ 2n+m, then Φ is satisfiable. Consider an optimal solution D ⊆ V that
satisfies Claim 1 and has weight at least 2n+m. Then,

• for each i, either {y1i , y2i } ⊆ D or {y1i , y2i } ⊆ D, but not both; and

• for each j, exactly one of c1j , c
2
j , and c3j belongs to D.

The following assignment x∗ will be shown to satisfy Φ. For each i: if {y1i , y2i } ⊆ D, then
set x∗i = 0; otherwise, set x∗i = 1. Then ζ = 2n+m by Claim 2, and this equality holds if and
only if no two negative-weight vertices in D have a common neighbor (of positive weight).
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We argue that, for each j, x∗ makes clause j evaluate to true. Let ckj be the vertex from

clause j that belongs to D. Suppose that the neighbor of ckj from the variable gadget is

• xδi for some δ ∈ {1, 2}. Then, yδi does not belong to D, so y1i and y2i belong to D and
thus x∗i = 1, which satisfies clause j.

• xδi for some δ ∈ {1, 2}. Then, yδi does not belong to D, so y1i and y2i belong to D and
thus x∗i = 0, which satisfies clause j.

So x∗ is a satisfying assignment.
By Claims 2, 3, and 4, the lifting problem for v has objective 2n + m if and only Φ is

satisfiable. Then, since 3OCC-3SAT is NP-hard and since the reduction is polynomial, the
problem of lifting vertex v into the indegree inequality (14) is NP-hard.

4.3 Separating indegree inequalities in linear time

Given x∗ ∈ Rn, consider the following separation algorithm for the indegree inequalities.

1. For each edge {u, v} ∈ E do

• If x∗u > x∗v then orient edge {u, v} as (u, v).

• Else orient it as (v, u).

2. Let d be the indegree vector obtained from orientation in step 1.

3. If
∑

i∈V (1− di)x∗i > 1 then return the inequality
∑

i∈V (1− di)xi ≤ 1.

4. Else certify that x∗ satisfies all indegree inequalities.

Theorem 8. The above algorithm solves the separation problem for the indegree inequalities
in linear time. In fact, it finds a most-violated inequality.

Proof. Clearly the algorithm runs in time O(n+m), so we must only prove correctness. Let
d denote the set of all indegree vectors. Consider the set of all orientations of G satisfying the
property that if {u, v} ∈ E and x∗u > x∗v then edge {u, v} is oriented as (u, v). Let d∗ denote
the set of corresponding indegree vectors. The indegree vector returned by the algorithm
belongs to d∗, and we argue that any indegree vector from d∗ corresponds to a most-violated
inequality (if any exist). For an indegree vector d ∈ d, define

f(d) :=
∑
i∈V

(1− di)x∗i .

The problem of finding a most-violated inequality is that of finding d ∈ d that maximizes
f(d). Consider d′ ∈ d \ d∗. By definition of d∗ this means the orientation corresponding to
d′ has an oriented edge (v, u) with x∗u > x∗v. Consider the indegree vector d′′ obtained by
flipping this edge’s orientation to (u, v). Then, d′′v = d′v + 1 and d′′u = d′u − 1, so

f(d′) = −x∗u + x∗v + f(d′′) < f(d′′).

So, d′ is suboptimal. It is easy to see that any two indegree vectors d1, d2 ∈ d∗ satisfy
f(d1) = f(d2). Thus, any indegree vector from d∗ is optimal.
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4.4 A linear-size extended formulation for the indegree-based relaxation

We propose an extended formulation for the indegree-based relaxation. Denote by F ′(G) the
set of (x, y) ∈ Rn+m satisfying

ye − xv ≤ 0 and ye − xu ≤ 0, ∀e = {u, v} ∈ E (15)∑
i∈V

xi −
∑
e∈E

ye ≤ 1 (16)

xi ≥ 0, ∀i ∈ V. (17)

Theorem 9. The polyhedron Q′(G) defined by the indegree inequalities and nonnegativity
bounds admits a size O(m+ n) extended formulation.

Proof. The polyhedron F ′(G) clearly has size O(m+n), so we must only show projx(F ′(G)) =
Q′(G).

To show Q′(G) ⊆ projx(F ′(G)), consider x ∈ Q′(G). For each edge e = {u, v} ∈ E, let
ye = min{xu, xv}. We claim that (x, y) ∈ F ′(G). Clearly, (x, y) satisfies the constraints (15)
and (17). Consider the indegree vector d obtained by orienting the edges as in the separation
algorithm. In this case,

∑
{u,v}∈E min{xu, xv} =

∑
i∈V dixi. So,∑

e∈E
ye =

∑
{u,v}∈E

min{xu, xv} =
∑
i∈V

dixi ≥
∑
i∈V

xi − 1,

where the last inequality holds since x satisfies all indegree inequalities. This shows that
(x, y) satisfies constraint (16), and thus (x, y) ∈ F ′(G).

To show projx(F ′(G)) ⊆ Q′(G), consider (x, y) ∈ F ′(G). Construct an alternative point
(x, y′) where, for each edge e = {u, v}, we have y′e = min{xu, xv}. Clearly (x, y′) ∈ F ′(G) as
well. To show x ∈ Q′(G), consider an arbitrary indegree vector d, and see that∑

i∈V
(1− di)xi =

∑
i∈V

xi −
∑
i∈V

dixi

≤
∑
i∈V

xi −
∑
{u,v}∈E

min{xu, xv}

=
∑
i∈V

xi −
∑
e∈E

y′e ≤ 1.

The inequality holds because
∑
{u,v}∈E min{xu, xv} ≤

∑
i∈V dixi for any indegree vector d.

Thus, x satisfies all indegree inequalities and is nonnegative by (17), so x ∈ Q′(G).

4.5 When the indegree-based relaxation is tight

Theorem 10. The equality P(G) = Q′(G) holds if and only if G is a forest.

Proof. The ‘if’ direction follows from Theorems 1 and 4. To prove the ‘only if’ direction,
suppose that G is not a forest. Then G has an undirected cycle subgraph (V ′, E′). Let
v ∈ V ′ be one of the cycle’s vertices. Pick a subset U ⊂ V of vertices, containing v, that
contains exactly one vertex from each component of G. Then, by Corollary 1, the inequality
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∑
i∈U xi ≤ 1 induces a facet of P(G). However, we argue that this inequality is not an

indegree inequality. If it were, then there is an indegree vector d satisfying dv = 0 and di = 1
for each i ∈ V ′ \ {v}, hence∑

i∈V ′
di = dv +

∑
i∈V ′\{v}

di = 0 + (|V ′| − 1).

However, the oriented edges from E′ contribute |E′| indegrees among V ′, i.e.,
∑

i∈V ′ di ≥
|E′| = |V ′|. Each of P(G) and Q′(G) has a unique half-space representation (up to scalar
multiples) since they are full-dimensional, but the facets of Q′(G) and P(G) are different,
so P(G) 6= Q′(G).

5 The Relative Strength of Indegree and Separator Inequali-
ties

In this section, we study the relative strength of the LP relaxations given by the indegree
and/or separator inequalities. We provide some theoretical insights, as well as some numerical
experiments.

We remark that the indegree-based and separator-based LP relaxations are incomparable
in general. For example, the indegree inequalities and nonnegativity bounds fully describe
the connected subgraph polytope of the claw graph K1,3, while the separator-based LP relax-
ation does not. On the other hand, the separator inequalities and 0-1 bounds fully describe
the connected subgraph polytope of the diamond graph K4 − e, but the indegree-based LP
relaxation does not.

We note that the indegree inequalities can be useful, even for dense graphs. For an extreme
example, consider the class of (dense) MWCS instances where the input is the complete
bipartite graph Kq,q and the “left” vertices A are weighted 1 and the “right” vertices B
are weighted 1 − q. The separator-based LP relaxation gives a bound no less than q/2, as
evidenced by the vector x∗ ∈ Q(G) that has x∗i = 1

2 for i ∈ A, and x∗i = 0 for i ∈ B. However,
the addition of the single indegree inequality

∑
i∈A xi +

∑
i∈B(1 − q)xi ≤ 1 proves that 1 is

the optimal MWCS objective. (This indegree inequality is obtained by orienting the edges
from A to B.)

To better understand the relative strength of these inequalities with respect to the graph’s
density, we perform some numerical experiments. Specifically, we compare their LP objectives
on random instances of the maximum-weight connected subgraph (MWCS) problem. In both
cases, we include the trivial 0-1 bounds. For our tests, we consider G(n, p) random graphs
with uniform random weights, as well as a class of graphs similar to the Kq,q example from
above. An anonymous referee remarked that this second class exhibits a problem structure
similar to the quasi-bipartite instances studied for Steiner tree [24].

For ease of implementation, we optimize over the associated extended formulations. Thus,
due to the size of the separator-based extended formulation, we are limited to relatively small
instances. Although we do not report solution times here, the time to solve the separator-
based extended formulation was typically three orders of magnitude longer than the time to
solve the indegree-based extended formulation. Of course, using the extended formulation is
not the quickest way to optimize over the separator-based LP relaxation in practice.
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5.1 Experiments for G(n, p) random graphs

The first set of test instances are random graphs on n = 50 vertices in which each edge
exists independently with probability p ∈ {0.01, 0.02, . . . , 0.25} and the vertex weights are
(independently) uniformly distributed integers between −50 and +50. For each value of p,
we construct five instances.

The mean LP objectives over the five instances are provided in Table 1. For comparison
purposes, we also provide the LP objective obtained when optimizing over just the 0-1 bounds,
the (integer) MWCS objective, and the LP bound obtained by using both indegree inequalities
and separator inequalities. A standard preprocessing procedure for the MWCS problem is to
contract an edge if its incident vertices both have nonnegative weight. Table 2 provides the
same information as Table 1, but after this preprocessing.

As can be seen in Tables 1 and 2, the separator inequalities and indegree inequalities
together (“Both”) provide strong LP bounds for our test instances. In fact, before prepro-
cessing, the gap is zero for 122 of the 125 instances (and 123 of 125 after preprocessing). As
our theoretical results would suggest, the indegree inequalities give strong bounds for very
sparse graphs, but weaken as the graphs become denser. Also consistent with our theoretical
results, the separator inequalities give poor LP bounds for very sparse graphs, and improve
for denser graphs. However, once the graphs become sufficiently dense, the LP relaxation
using only the 0-1 bounds is enough. By comparing Tables 1 and 2, one sees that the pre-
processing step often makes the graph sparser, thus improving the resulting indegree-based
LP bound; however, the separator-based LP bound does not change.

5.2 Experiments for instances similar to the Kq,q example

The second set of test instances are also random graphs on n = 50 = 2q vertices, but they are
constructed to be similar to the Kq,q example from above. They have a large independent set
with positive weights, and all other vertices have large negative weights. The instances are
constructed by taking half of the vertices and designating them as an independent set; all of
the other possible edges exist independently with probability p ∈ {0.1, 0.2, . . . , 1}. As in the
Kq,q example, the independent set vertices are each given weight 1, and the other nodes are
given weight 1− q = −24. By this construction, the optimal MWCS objective is 1. Table 3
reports the LP bounds for each value of p (averaged over five instances).

As can be seen in Table 3, the indegree inequalities give optimal LP bounds for very
dense instances—even at p = 0.6, while the separator-based LP relaxation is always weak.
The strength of the indegree-based LP relaxation deteriorates quickly around p = 0.8, but
it is still stronger than the separator-based bound at p = 1. Indeed, it can be proven that
this dominance holds over all instances from this class. The separator-based LP objective is
at least 1

2q regardless of p, while the indegree-based objective is at most 1
3q + 2

3 , and this is
sharp when p = 1.

6 Conclusion

In this paper, we provide foundational knowledge about the connected subgraph polytope
P(G). We study two classes of valid inequalities called separator inequalities and indegree
inequalities, which have been previously shown to be computationally useful and theoretically
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interesting. We determine when these inequalities induce facets, when they fully describe the
connected subgraph polytope, how to separate them in polynomial time, and how to craft
polynomial-size extended formulations. We show that it is NP-hard to lift the indegree
inequalities, but lifting is easy for separator inequalities.

As we have seen, the separator-based relaxation Q(G) coincides with P(G) when the
graph has no independent set of three vertices, a class of very dense graphs. On the other
hand, the indegree inequalities give a perfect description for forests—a class of sparse graphs.
This suggests that the indegree inequalities should give strong LP relaxations for very sparse
graphs, and the separator inequalities should provide strong LP relaxations for sufficiently
dense graphs. These intuitions are corroborated by numerical experiments on random in-
stances of the maximum-weight connected subgraph (MWCS) problem. Moreover, these
inequalities, when used together, give optimal LP bounds for 122 out of 125 MWCS test
instances on G(n, p) random graphs. This paper focuses on the theoretical aspects of the
separator and indegree inequalities. An interesting topic for future research is to determine
how these inequalities should best be used for computational purposes.
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Table 1: This table reports LP bounds for MWCS instances on G(n, p) graphs using: the 0-1
bounds (0-1), the indegree inequalities and 0-1 bounds (Ind), the separator inequalities and
0-1 bounds (Sep), and both the indegree and separator inequalities and 0-1 bounds (Both).
The numbers in the table are averages taken over five instances. If Ind or Sep is stronger
than the other (on average), it is bolded. If Both is stronger than Ind and Sep, then it is
bolded. If IP is not equal to Both, then it is bolded. If 0-1 equals IP, it is bolded.

Without Preprocessing

p n m 0-1 Ind Sep Both IP

0.01 50 17.0 631.0 107.0 315.5 107.0 107.0
0.02 50 25.0 666.4 166.6 333.2 157.1 149.0
0.03 50 37.4 546.4 168.1 273.2 142.8 138.2
0.04 50 46.8 602.8 436.3 371.2 361.8 361.8
0.05 50 66.4 685.0 612.7 502.0 502.0 502.0

0.06 50 73.4 609.2 579.7 519.2 519.2 518.8
0.07 50 89.2 591.6 582.4 543.0 543.0 543.0
0.08 50 94.8 557.4 550.8 504.2 504.2 504.2
0.09 50 109.8 739.0 737.6 688.2 688.2 688.2
0.10 50 120.6 596.4 593.3 564.6 564.6 564.6

0.11 50 129.6 530.6 529.4 506.2 506.2 506.2
0.12 50 145.0 654.0 653.6 643.6 643.6 643.6
0.13 50 163.8 675.0 675.0 673.6 673.6 673.6
0.14 50 168.8 648.4 648.4 648.2 648.2 648.2
0.15 50 185.8 622.4 622.4 607.6 607.6 607.6

0.16 50 199.8 557.6 557.6 556.4 556.4 556.4
0.17 50 200.8 726.6 726.6 723.0 723.0 723.0
0.18 50 216.6 628.6 628.6 624.4 624.4 624.4
0.19 50 235.4 581.6 581.6 578.6 578.6 578.6
0.20 50 231.2 527.6 527.6 522.0 522.0 522.0

0.21 50 256.4 606.8 606.8 605.6 605.6 605.6
0.22 50 268.2 605.8 605.8 603.2 603.2 603.2
0.23 50 282.4 658.2 658.2 658.2 658.2 658.2
0.24 50 292.0 632.4 632.4 632.4 632.4 632.4
0.25 50 298.8 608.6 608.6 608.6 608.6 608.6
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Table 2: This table provides the same information as Table 1, but after performing the
preprocessing step of contracting edges whose incident vertices have nonnegative weight.

After Contracting Edges

p n m 0-1 Ind Sep Both IP

0.01 45.2 12.2 631.0 107.0 315.5 107.0 107.0
0.02 41.4 16.2 666.4 160.8 333.2 156.2 149.0
0.03 46.0 33.0 546.4 154.7 273.2 138.2 138.2
0.04 37.2 31.0 602.8 391.8 371.2 361.8 361.8
0.05 35.6 44.8 685.0 574.8 502.0 502.0 502.0

0.06 31.0 44.2 609.2 562.7 519.2 519.2 518.8
0.07 30.6 56.2 591.6 564.6 543.0 543.0 543.0
0.08 32.4 59.2 557.4 525.7 504.2 504.2 504.2
0.09 30.6 64.4 739.0 712.8 688.2 688.2 688.2
0.10 30.0 67.0 596.4 582.0 564.6 564.6 564.6

0.11 31.4 75.0 530.6 516.4 506.2 506.2 506.2
0.12 26.6 64.0 654.0 645.6 643.6 643.6 643.6
0.13 25.6 61.8 675.0 673.8 673.6 673.6 673.6
0.14 24.6 58.0 648.4 648.2 648.2 648.2 648.2
0.15 26.4 73.4 622.4 615.9 607.6 607.6 607.6

0.16 28.4 83.0 557.6 556.7 556.4 556.4 556.4
0.17 23.6 60.4 726.6 724.0 723.0 723.0 723.0
0.18 26.2 82.4 628.6 626.9 624.4 624.4 624.4
0.19 27.2 90.6 581.6 580.6 578.6 578.6 578.6
0.20 30.2 107.8 527.6 524.2 522.0 522.0 522.0

0.21 26.0 92.4 606.8 605.6 605.6 605.6 605.6
0.22 26.0 95.6 605.8 604.5 603.2 603.2 603.2
0.23 25.4 93.2 658.2 658.2 658.2 658.2 658.2
0.24 25.2 95.6 632.4 632.4 632.4 632.4 632.4
0.25 25.2 93.2 608.6 608.6 608.6 608.6 608.6

Table 3: This table reports LP bounds for MWCS instances that are similar to the Kq,q

example. One of the five instances at p = 0.1 is disconnected; all others are connected.
p n m 0-1 Ind Sep Both IP

0.1 50 89.6 25 1.0 12.5 1.0 1.0
0.2 50 187.2 25 1.0 12.5 1.0 1.0
0.3 50 276.0 25 1.0 12.5 1.0 1.0
0.4 50 356.0 25 1.0 12.5 1.0 1.0
0.5 50 455.8 25 1.0 12.5 1.0 1.0

0.6 50 553.4 25 1.0 12.5 1.0 1.0
0.7 50 636.8 25 1.5 12.5 1.3 1.0
0.8 50 740.0 25 4.9 12.5 3.7 1.0
0.9 50 828.8 25 7.1 12.5 5.4 1.0
1.0 50 925.0 25 9.0 12.5 6.9 1.0
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