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Abstract

The vertex cover polytopes of graphs do not admit polynomial-size extended
formulations. This motivates the search for polyhedral analogues to approxi-
mation algorithms and fixed-parameter tractable (FPT) algorithms. In this
paper, we take the FPT approach and study the k-vertex cover polytope
(the convex hull of vertex covers of size k). Our main result is that there are
extended formulations of size O(1.47k+kn). We also provide FPT extended
formulations for solutions of size k to instances of d-hitting set.

Keywords: fixed-parameter tractable, extended formulation, vertex cover,
independent set, cardinality constrained, hitting set

1. Introduction

Two of the most well-studied problems in combinatorial optimization are
the minimum vertex cover problem and the maximum independent set prob-
lem. Their polyhedral representations, the vertex cover polytope VC(G) and
the independent (or stable) set polytope STAB(G), have been the subject
of numerous studies [27, 25, 26, 31], and can be defined as follows. For a
graph G = (V,E),

VC(G) := conv.hull
{
xS
∣∣ S ⊆ V is a vertex cover for G

}
STAB(G) := conv.hull

{
xS
∣∣ S ⊆ V is an independent set in G

}
where xS denotes the characteristic vector of S. These two polytopes are
closely related to each other. Indeed, letting 1 be a vector of ones, it is easy
to see that

VC(G) = {x | (1− x) ∈ STAB(G)}.

One reason for studying these polytopes is that exact, partial, or even
approximate descriptions of them by linear inequalities can be used to help
solve integer programs with set packing constraints [27].

Preprint submitted to Elsevier March 13, 2016



Due to the difficulty of the minimum vertex cover problem and the max-
imum independent set problem, VC(G) and STAB(G) are likely to be com-
plicated. Indeed, they can have exponentially many facets even when G is
series-parallel, but, in this case, VC(G) and STAB(G) admit linear-size ex-
tended formulations [3]. (The size of an extended formulation is the number
of linear inequalities in its description.)

However, small extended formulations for VC(G) and STAB(G) are the
exception rather than the rule. For some classes of graphs, 2Ω(

√
n) linear

inequalities are needed [16], and a lower bound of 2Ω(n) has been conjec-
tured [7]. This motivates the search for approximate or fixed-parameter
tractable (FPT) extended formulations. The polyhedral approximability of
VC(G) and STAB(G) was recently studied by Bazzi et al. [4]. In this paper,
we take the FPT approach. An extended formulation is said to be FPT if
its size is bounded above by f(k)nO(1), where k is the parameter of choice,
f is a function that depends only on k, and n is the input size.

To formalize our approach, consider the k-vertex cover polytope VCk(G)
of a graph G, which is the convex hull of vertex covers of G that have size k.

VCk(G) := conv.hull
{
xS
∣∣ S ⊆ V is a vertex cover for G and |S| = k

}
.

The problem of determining whether a graph has a vertex cover of size
k, i.e., the k-vertex cover problem, is the prototypical problem in the FPT
literature, so there are numerous structural results that can be used when
developing extended formulations. For example, we use Damaschke’s [15]
refinement of Sam Buss’s kernel for k-vertex cover [11] and decomposition
ideas from Chen et al. [12].

1.1. Our contributions

Our main result is that k-vertex cover polytopes of n-vertex graphs admit
extended formulations of size O(1.47k + kn). En route to proving this, we
exhibit size O(n) formulations for the case of graphs of maximum degree
at most two. In its proof, we use known results regarding the cardinality-
constrained matching polytope and t-perfect graphs.

Before showing this, we provide simple extended formulations for the
hypergraph case. They are of size O(dkn) for d-uniform hypergraphs. (In
a d-uniform hypergraph, each hyperedge has d vertices.) This is equivalent
to solutions of size k to instances of d-Hitting Set. Our results hold when
each hyperedge has at most d vertices, but we state everything for d-uniform
hypergraphs for sake of exposition. This implies size O(2kn) extended for-
mulations for the standard vertex cover problem. This bound is worse than
what we eventually will show, but it is easier to obtain.

2



1.2. Preliminaries and related work

Definition 1. Let P = {x | Ax ≤ b} ⊆ Rn be a polyhedron. A polyhedron
Q ⊆ Rd is said to be an extension for P if projx(Q) = P , where projx(Q) :=
{x | ∃y : (x, y) ∈ Q(G)}. The size of an extension is the number of its facets.

A particular representation of an extension by linear inequalities is called
an extended formulation. Consult the surveys of Conforti et al. [14] and
Kaibel [19] for some notable extended formulations.

Definition 2. The extension complexity of a polyhedron P is

xc(P ) := min{size(Q) | Q is an extension for P}.

We will use Balas’ extended formulation for the union of polyhedra.

Theorem 1 (Balas [1, 2]). Consider q polytopes P i ⊆ Rn, i = 1, . . . , q and
write P := conv.hull

(⋃q
i=1 P

i
)
. Then, xc(P ) ≤ q +

∑q
i=1 xc(P i).

Since the work of Yannakakis [34], there have been numerous advances
showing that certain polytopes have high extension complexity. For ex-
ample, polytopes associated with NP-hard problems such as the traveling
salesman problem and the 0-1 knapsack problem admit no polynomial-size
extended formulation [16, 28]—irrespective of whether P=NP. There are
even polynomial-time solvable problems such as matching that admit no
polynomial-size extended formulations [29]. While the matching polytope
does not admit a polyhedral equivalent to an FPTAS [8], it does admit
FPT extended formulations parameterized by the number of edges in the
matching [20].

In a draft of this paper, we asked whether there exist FPT extended
formulations for independent set (parameterized by solution size). Gajarskỳ
et al. [17] answer this in the negative for arbitrary graphs, but provide FPT
extended formulations for graphs of bounded expansion.

The independent set and vertex cover problems have both been studied
from the perspective of approximate extended formulations. Independent
set admits no polynomial-size uniform extended formulation that achieves
an O(n1−ε) approximation for any constant ε > 0 [9], which matches the
inapproximability of the maximum independent set problem [18, 35]. If
we allow for non-uniform extended formulations, that is, the inequalities
defining the feasible region need not be the same for every n-vertex graph,
then O(1)-approximate formulations still require superpolynomial size [4].
Somewhat surprisingly, O(n1/2)-approximate extended formulations of size
O(n) exist, but they are NP-hard to construct [4]. For the vertex cover
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problem, there are no polynomial-size extended formulations achieving a
(2 − ε)-approximation [4] for any constant ε > 0, and the standard linear
programming relaxation provides a matching upper bound of 2.

Sometimes it will be convenient to work with the k-independent set poly-
tope STABk(G). We note that the independent set polytope STAB(G) and
vertex cover polytope VC(G) have the same extension complexity. This
can be seen by complementing the variables, i.e., replacing each instance
of a variable xi in a formulation by 1 − xi. The same idea shows that
their cardinality-constrained counterparts VCk(G) and STABn−k(G) have
the same extension complexity.

Other parameters besides solution size can be used when developing
extended formulations for vertex cover. A notable example is the graph
invariant treewidth tw, which is a measure of how “tree-like” a graph is.
There exist extended formulations for VC(G) of size O(2twn) [23] (cf. an
alternative proof by Buchanan and Butenko [10] based on the framework of
Martin et al. [24]). Similar results hold for more general problems [5, 21, 22].

2. Formulations for Vertex Cover in Hypergraphs

The main result of this section is that there are simple size O(dkn)
extended formulations for k-vertex covers of d-uniform hypergraphs. This
bound is O(n) when d+k is a constant. The extended formulations are based
primarily on the following foklore lemma, which we prove for completeness.

Lemma 1 (folklore). In a d-uniform hypergraph H = (V,E), the number
of minimal vertex covers of H that have size ≤ k is at most dk.

Proof. Denote by Sk(H) the set of minimal vertex covers that have size at
most k. We are to show that |Sk(H)| ≤ dk. The proof is by induction on k.
In the base case, k = 0. If E = ∅, then S0(H) = {∅} so |S0(H)| = 1 ≤ d0.
If not, then E 6= ∅ so S0(H) = ∅ and |S0(H)| = 0 ≤ d0. Now suppose the
claim holds for k = p. If E = ∅, then |Sp+1(H)| = 1. If not, let e ∈ E so
|Sp+1(H)| ≤

∑
j∈e |Sp(H − j)| ≤ d · dp.

The bound in Lemma 1 is sharp. It is achieved on the d-uniform hyper-
graph consisting of k disjoint hyperedges.

Proposition 1. If H is a d-uniform n-vertex hypergraph, then the k-vertex
cover polytope VCk(H) of H admits an extended formulation of size O(dkn).
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Proof. Define Sk(H) as in the proof of Lemma 1. For each S ∈ Sk(H), define
P (S) :=

{
x ∈ [0, 1]n

∣∣ ∑
i∈V xi = k; x ≥ xS

}
, where xS denotes the charac-

teristic vector of S. We claim VCk(H) = conv.hull
(
∪S∈Sk(H)P (S)

)
=: P ,

in which case the proposition would follow by Theorem 1.
(⊆) Consider an extreme point of VCk(H), which will be xC for some

k-vertex cover C ⊆ V . Then, C is a superset of some minimal vertex cover
C ′, and C ′ ∈ Sk(H). Thus, xC ∈ P (C ′) ⊆ P .

(⊇) Let x′ be an extreme point of P , which will be an extreme point of
some P (S). It is straightforward to show that P (S) is an integer polytope,
so x′ = xD for some D ⊆ V . Thus D ⊇ S and |D| = k, meaning that D is
a k-vertex cover so x′ = xD belongs to VCk(H).

We remark that a better size bound O(f(d, k) + kn) can be achieved,
where f is a function that depends only on d and k. To achieve this, one
can exploit the “full kernel” given in Theorem 7 of Damaschke’s paper [15].
We employ the full kernel in the next section, and thus do not spend time
detailing the approach for hypergraphs.

3. Improved FPT Formulations for Vertex Cover

The results of the previous section immediately imply size O(2kn) ex-
tended formulations for the k-vertex cover polytopes of n-vertex graphs. In
this section, we improve this bound in two ways. One improvement is to
reduce the base of the exponential term from 2 to 1.47 using a decompo-
sition theorem of Chen et al. [12]. The other improvement is to use the
“full kernel” of Damaschke [15] to separate the exponential term from the
quantity n, resulting in a bound of the form O(f(k) + kn).

Our first lemma comes from the full kernel given by Damaschke [15],
which is itself a refinement of the kernel given by Sam Buss [11].

Lemma 2 (via Theorem 3 of [15]). If a graph G = (V,E) has a k-vertex
cover, then there is a subset Zk(G) ⊆ V of vertices such that

|V | − |Zk(G)| ≤ 1

4
(k + 1)2 + k

and no vertex of Zk(G) belongs to a minimal vertex cover of size at most k.

The full kernel V \ Zk(G) can be found in time O(m + Tk), where Tk
is the time to find a k-vertex cover in G or determine that none exist [15].
Chen et al. [13] show that Tk = O(1.2738k + kn).
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We use the notation x|S . Here, x is a |V |-dimensional vector, S ⊆ V is
a subset of vertices, and x|S := [xi]i∈S is an |S|-dimensional vector. Also,
N(u) := {v ∈ V | {u, v} ∈ E} denotes the neighborhood of vertex u.

Lemma 3. If G = (V,E) is an n-vertex graph and k is a positive integer,
then

VCk(G) = conv.hull
(
∪kj=0Pj

)
=: P.

Here, Pj is defined to be empty if G has no j-vertex cover. Otherwise,
consider a Zj(G) satisfying Lemma 2, Gj := G − Zj(G), and Pj is the set
of all x ∈ [0, 1]n satisfying∑

i∈Zj(G)

xi = k − j (1)

x|V \Zj(G) ∈ VCj(Gj) (2)

xv = 1 v ∈ N(z), z ∈ Zj(G). (3)

Hence, xc(VCk(G)) ≤ (k + 1)(2n+ 1) +
∑k

j=0 xc(VCj(Gj)).

Proof. The polytope Qj defined as the set of all x ∈ [0, 1]n satisfying con-
straints (1) and (2) has extension complexity at most 2n + xc(VCj(Gj)).
Since Pj is a face of Qj , we have xc(Pj) ≤ xc(Qj). Thus, P has extension

complexity at most (k + 1) +
∑k

j=0 (2n+ xc(VCj(Gj))) by Theorem 1. To
complete the proof, we show VCk(G) = P . If either is empty, so is the other.

(⊇) Let x′ be an extreme point of P , which will be an extreme point of
some Pj . It can be argued that projx|Zj(G)

Qj is the convex hull of 0-1 vectors

of dimension |Zj(G)| that have k− j ones. Thus, Qj is integral, and so is its
face Pj . So, x′ = xD for some D ⊆ V . Edges of G having one endpoint in
Zj(G) are covered by D by constraint (3), and no edge has both endpoints in
Zj(G). Edges with both endpoints in V \Zj(G) are covered by constraint (2).
Further, |D| = |D ∩Zj(G)|+ |D ∩ (V \Zj(G))| = (k− j) + j = k, so D is a
k-vertex cover for G, i.e., x′ ∈ VCk(G).

(⊆) Consider an extreme point of VCk(H), which will be xC for some
k-vertex cover C ⊆ V . Then, C is a superset of some minimal vertex cover
C ′. Let q = |C ′|. Then C ′ ⊆ V \ Zq(G) and xC ∈ Pq ⊆ P .

In the following theorem, we say that a vertex cover C of G is consistent
with a partition (F,D,R) of the vertices of a graph G if F ⊆ C and D∩C =
∅. The idea is that vertices from F are fixed in the cover, vertices from D are
fixed out of the cover, and the remaining vertices from R are undetermined.
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Theorem 2 (Chen et al. [12]). For every graph G = (V,E) and every
positive integer k, there is a collection L(G, k) of triples satisfying:

1. |L(G, k)| ≤ 1.466k;

2. each (F,D,R) ∈ L(G, k) is a partition of V ;

3. each k-vertex cover of G is consistent with exactly one triple in L(G, k);

4. for each (F,D,R) ∈ L(G, k), the maximum degree of G[R] is ≤ 2.

Chen et al. [12] provide an algorithm, running in time O(1.47kn), that
finds such a collection L(G, k).

Theorem 2 decomposes the k-vertex covers of the graph into at most
1.466k “easy” pieces, and this will allow us to decompose the k-vertex cover
polytope similarly. Much of what remains is to show how to handle the
easy pieces, i.e., that there is a small polyhedral description for cardinality-
constrained vertex covers in the graph G[R] in Theorem 2. First, we identify
a small formulation for the k-independent set polytope of such a graph. This
will imply similar results for cardinality-constrained vertex covers.

We will use the following theorem. It follows from known results about
the matching polytope [30] as noted by Walter and Kaibel [33] (see also [32]).

Theorem 3. The intersection of the matching polytope of a graph with a
cardinality constraint is integral.

Recall that the line graph L(G) of a graph G has vertex set E(G) and
two vertices from L(G) are adjacent if the corresponding edges from G are
incident. A graph H is said to be a line graph if there exists a graph G such
that H = L(G). By the equivalence of the matching polytope of G and the
independent set polytope of its line graph L(G), we have the following.

Corollary 1. If G = (V,E) is a line graph and k is an integer, then

STABk(G) = STAB(G) ∩

{
x

∣∣∣∣∣ ∑
i∈V

xi = k

}
.

Corollary 1 does not hold for arbitrary graphs; it fails for the claw

K1,3 = ([4], {{1, 2}, {1, 3}, {1, 4}}) .

Indeed, x̂ = 1
2(1, 0, 0, 0)+ 1

2(0, 1, 1, 1) belongs to STAB(K1,3) and
∑4

i=1 x̂i =
2, but x̂ violates the constraint x1 = 0, which is valid for STAB2(K1,3).
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Lemma 4. If G = (V,E) is an n-vertex graph of maximum degree at most
two, then, for any integer p, STABp(G) is the set of x ∈ [0, 1]n satisfying:∑

i∈V
xi = p (4)

xi + xj ≤ 1, ∀{i, j} ∈ E (5)∑
i∈C

xi ≤ (|C| − 1) /2, for every odd cycle C. (6)

Hence, xc(VCk(G)) ≤ 11
5 n for graphs G of maximum degree at most two.

Proof. Recall that a graph is said to be t-perfect if its independent set poly-
tope is fully described by the 0-1 bounds, edge inequalities (5), and odd-cycle
inequalities (6). Since G has maximum degree at most two, it is the disjoint
union of cycle and path graphs and is thus series-parallel. Series-parallel
graphs are t-perfect, as first shown by [6] (cf. Chapter 68 of [30]). Thus,
STAB(G) = {x ∈ [0, 1]n | x satisfies (5) and (6)}, and since G is a line
graph, the first claim follows by Corollary 1. To see a size 11

5 n bound for
STABp(G), it is enough to show that for each component G′ there are at
most 11

5 |V (G′)| irredundant corresponding inequalities. This is achieved by
the 5-cycle, and it can be seen that no other component has more. The last
claim holds by letting p = n− k and complementing the variables.

Lemma 5. The k-vertex cover polytope of an n-vertex graph G has extension
complexity at most 1.466k

(
11
5 n+ 1

)
.

Proof. By Theorem 2, we can write VCk(G) as follows.

VCk(G) = conv.hull

 ⋃
(F,D,R)

Pk(F,D,R)

 .

Here, the union is taken over all (F,D,R) ∈ L(G, k) and Pk(F,D,R) is the
convex hull of k-vertex covers that are consistent with (F,D,R). We assume
that no edge {u, v} of G has u ∈ D and v ∈ R, for if this is the case then we
can move v to F . The polytope Pk(F,D,R) can thus be written as the set
of all x ∈ Rn satisfying xi = 1 for all i ∈ F , xi = 0 for all i ∈ D, and x|R ∈
VCk−|F |(G[R]). By Lemma 4, the constraints for x|R can be written using

no more than 11
5 |R| ≤

11
5 n inequalities. The claim follows by Theorem 1.

Theorem 4. The k-vertex cover polytope of an n-vertex graph G admits an
extended formulation of size O(1.47k + kn).
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Proof. Define Gj as in Lemma 3. Then,

xc(VCk(G)) ≤ (k + 1)(2n+ 1) +

k∑
j=0

xc(VCj(Gj)) (7)

≤ (k + 1)(2n+ 1) +

k∑
j=0

1.466j
(

11

5
|V (Gj)|+ 1

)
(8)

≤ (k + 1)(2n+ 1) +

k∑
j=0

1.466j
(

11

5

(
1

4
(j + 1)2 + j

)
+ 1

)
(9)

= O
(
kn+ 1.466kk3

)
(10)

= O
(
kn+ 1.47k

)
. (11)

Here, inequality (7) holds by Lemma 3, inequality (8) holds by Lemma 5,
and inequality (9) holds by Lemma 2.

4. Conclusion

We provide FPT extended formulations for the vertex cover polytopes
of (hyper)graphs, with the size k of the cover as the parameter. An initial
extended formulation has size O(dkn) for the case of d-uniform hypergraphs,
which implies size O(2kn) extended formulations for graphs. Using struc-
tural results from the FPT literature and known polyhedral results about
matching and independent set polyhedra, we are able to improve the bound
to O(1.47k + kn).

It is likely that smaller extended formulations exist. One approach is
to use more insights from the FPT literature. For example, one algorithm
solves the (unweighted) k-vertex cover problem in time O(1.2738k+kn) [13].
However, it relies on reduction rules that remove feasible solutions, so its
ideas may not be directly applicable when developing extended formula-
tions. For the weighted variant, an algorithm of Chen et al. [12] finds the K
cheapest k-vertex covers in time O(1.47kn+ 1.22kKn). We are aware of no
faster, published algorithm to find a cheapest k-vertex cover, although this
would not surprise us if one existed.

It would be interesting to find matching lower and upper bounds for the
extension complexity of the k-vertex cover polytope. For example, can we
rule out extended formulations of size 2o(k)nO(1)? A weaker claim holds.
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Remark 1. The k-vertex cover polytopes of n-vertex graphs do not admit

extended formulations of size 2o(
√
k)nO(1).

Proof. For any graph G, VC(G) = conv.hull {∪nk=0 VCk(G)}. So, by The-

orem 1, if xc(VCk(G)) = 2o(
√
k)nO(1), then xc(STAB(G)) = xc(VC(G)) =

2o(
√
n), which contradicts that independent set polytopes of some graphs

have extension complexity 2Ω(
√
n) [16].

It has been conjectured [7] that the 2Ω(
√
n) bound for independent set

polytopes can be strengthened to 2Ω(n). If this is true, then there are no size
2o(k)nO(1) extended formulations for k-vertex cover, by the same argument.
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