
Solving maximum clique in sparse graphs:

an O(nm + n2d/4) algorithm for d-degenerate

graphs

Austin Buchanan, Jose L. Walteros, Sergiy Butenko, Panos M. Pardalos

October 20, 2013

Abstract

We describe an algorithm for the maximum clique problem that is pa-
rameterized by the graph’s degeneracy d. The algorithm runs inO (nm+ nTd)
time, where Td is the time to solve the maximum clique problem in an
arbitrary graph on d vertices. The best bound as of now is Td = O(2d/4)
by Robson. This shows that the maximum clique problem is solvable in
O(nm) time in graphs for which d ≤ 4 log2 m+O(1). The analysis of the
algorithm’s runtime is simple; the algorithm is easy to implement when
given a subroutine for solving maximum clique in small graphs; it is easy
to parallelize. In the case of Bianconi-Marsili power-law random graphs,
it runs in 2O(

√
n) time with high probability. We extend the approach

for a graph invariant based on common neighbors, generating a second
algorithm that has a smaller exponent at the cost of a larger polynomial
factor.

keywords: maximum clique, degeneracy, sparse graphs, fixed-parameter tractabil-
ity, d-degenerate graphs

1 Introduction

We consider the maximum clique problem in sparse graphs. For notation and
more information on this problem, see [3]. Our work is inspired by the near-
optimal algorithm of [7] that lists all maximal cliques in a d-degenerate n-vertex
graph in O(dn3d/3) time. Since this algorithm enumerates all maximal cliques,
it finds all maximum cliques as well. This shows that the maximum clique
problem is fixed-parameter tractable when parameterized by degeneracy. Our
task of finding a maximum clique is less involved and admits a better time
bound.

Degeneracy is a common measure of the sparseness of a graph. Many real-life
graphs are sparse, have low degeneracy, and follow a power-law degree distribu-
tion [6]. It is not uncommon to encounter graphs with millions of vertices but
with degeneracy less than one hundred (see Table 2). Even some of the most

1

Table 1: Comparison of fastest known clique algorithms.
arbitrary graphs d-degenerate graphs

list all maximal cliques O(3n/3) by [5] O∗(3d/3) by [7]
find a maximum clique O(2n/4) by [10] O∗(2d/4) this paper

challenging benchmark instances for the maximum clique problem have d ≤ n/2.
In general, the degeneracy is sandwiched between the minimum degree and the
maximum degree.

Definition 1 (degeneracy). A graph is said to be d-degenerate if every (non-
empty) subgraph has a vertex of degree at most d. The degeneracy of a graph is
the smallest value of d such that it is d-degenerate.

By [8], every d-degenerate graph admits an ordering of its vertices (v1, . . . , vn)
such that each vertex vi has at most d neighbors after it in the ordering, i.e.,
|N(vi) ∩ {vi, . . . , vn}| ≤ d. In fact, admitting such an ordering is equivalent
to being d-degenerate. The degeneracy, as well as such an ordering, can be
found in O(m+n) time by iteratively removing a vertex of minimum degree [9].
In this paper, we will assume, w.l.o.g. that the input graph is connected, so
O(m+ n) = O(m).

The community-degeneracy, defined below, can also be found in polynomial
time by iteratively removing an edge whose incident vertices have the fewest
common neighbors. In this paper we show that such an ordering can be found
in O(nm) time. We note that for most of the real-life instances appearing
in [11], the community-degeneracy is halfway between the clique number and
the degeneracy (or tighter). See Table 2 below.

Definition 2 (community-degeneracy). A graph is said to be c-community-
degenerate if every (non-edgeless) subgraph G′ has an edge {u, v} with |NG′(u)∩
NG′(v)| ≤ c. The community-degeneracy of a graph is the smallest value of c
such that it is c-community-degenerate.

It is easy to see that a c-community-degenerate graph G = (V,E) ad-
mits an ordering of its edges (e1, . . . , em) such that each edge ei = {ui, vi}
has |NG[Ei](ui) ∩NG[Ei](vi)| ≤ c, where G[Ei] is the edge-induced subgraph of
Ei = {ei, . . . , em}.

Definition 3 (induced subgraph). Consider a graph G = (V,E). Given a
subset S ⊆ V of vertices, we denote the vertex-induced subgraph by G[S] =
(S,E ∩ (S×S)). Given a subset E′ ⊆ E of edges, we denote the edge-induced
subgraph by G[E′] = (V ′, E′) where V ′ = {v ∈ V : ∃{v, w} ∈ E′}.

It is also easy to see that c ≤ d−1, as any d-degenerate-ordering immediately
gives a (d − 1)-community-degenerate ordering (replace the vertex v1 in the
vertex-ordering by the edges incident to v1, replace the vertex v2 by the edges
incident to v2 but not to v1, etc). In general, the community-degeneracy c is
sandwiched between min{u,v}∈E |N(u) ∩N(v)| and max{u,v}∈E |N(u) ∩N(v)|.

2

Table 2: Comparing degeneracy d and community-degeneracy c versus clique
number ω on some real-life graphs from [1, 11].

Graph n m ω c d
as-22july06 22,963 48,436 17 15 25
kron g500-simple-logn16 65,536 2,456,071 136 283 432
citationCiteseer 268,495 1,156,647 13 11 15
ldoor 952,203 22,785,136 21 19 34
in-2004 1,382,908 13,591,473 489 487 488
cage15 5,154,859 47,022,346 6 4 25
uk-2002 18,520,486 261,787,258 944 942 943

In arbitrary graphs, the degeneracy d and the community-degeneracy c can
be Ω(n); the complete graph on n vertices has d = n−1 and c = n−2. However,
these graph invariants behave much differently on power-law graphs. A graph
is said to be power-law if the number of vertices with degree q is proportional
to q−α, where α ∈ (1, 3) is a constant. Under the Bianconi-Marsili power-law
random graph model, bounds on d (and therefore c) can be shown to hold
with high probability. It has been shown [2] that d = O(n1/(2α)) whenever
1 < α ≤ 2 and d = O(n(3−α)/4) whenever 2 < α < 3. This shows that, with
high probability, our algorithm that is parameterized by degeneracy runs in
2O(
√
n) time in power-law random graphs (α > 1). The time bound improves as

α increases, running in time 2O(n1/4) for α > 2. We also note that a different
power-law random graph model, the Barabási-Albert model, creates graphs with
bounded degeneracy [7].

Furthermore, the degeneracy d can be arbitrarily larger than the community-
degeneracy c. This is the case for the class of hypercube graphs. These graphs
are triangle-free and hence have community-degeneracy c = 0. However, the
degeneracy of the d-dimensional hypercube graph is d.

2 The algorithms

Lemma 1. Let (v1, . . . , vn) be any vertex-ordering of an n-vertex graph G =
(V,E). Denote by ω(G) the size of a maximum clique in a graph G. Then,

ω(G) = 1 + max
1≤i≤n

ω(G[Si]), (1)

where Si = N(vi) ∩ {vi, . . . , vn}.

Proof. First see that ω(G) ≥ 1+ω(G[Si]) for any vertex vi ∈ V ; take a maximum
clique in G[Si] and add vi. Now we show the reverse inequality. Let S be a
maximum clique in G and let vi∗ ∈ S be its earliest vertex in the vertex-ordering.
Then S ⊆ Si∗ ∪ {vi∗} and ω(G[Si∗]) ≥ ω(G)− 1.

Let Td denote the time to solve the maximum clique problem in an arbitrary
d-vertex graph. Note that Td = O(2d/4) by the well-cited but unpublished

3

paper [10] or Td = O(1.2114d) by the peer-reviewed [4]. Either (or any other
clique algorithm) can be used as MaxCliqueSubroutine(·) in Algorithms 1
and 3.

Data: A graph G = (V,E)
Result: The clique number ω(G)
compute a degeneracy ordering (v1, . . . , vn) of G;
for i = 1, . . . , n do

Si ← N(vi) ∩ {vi, . . . , vn};
// call Robson’s algorithm [10]

ω(G[Si])← MaxCliqueSubroutine(G[Si]);

end
return ω(G) = 1 + max1≤i≤n ω(G[Si]);

Algorithm 1: A maximum clique algorithm parameterized by degeneracy.

Theorem 1. Algorithm 1 solves the maximum clique problem in d-degenerate
graphs in O(nm+nTd) = O(nm+n2d/4) time. Using n processors, this reduces
to O (m+ Td) time.

Proof. The degeneracy ordering (v1, . . . , vn) can be found in O(m) time [9]. The
for-loop can be run in parallel. It is clear that Si can be found in O(n) time.
We argue that G[Si] can be created in O(m) time. For each edge e, check (in
constant time by storing Si as a boolean n-array) if its incident vertices are
after vi in the vertex-ordering. If so, add edge e to G[Si]. See that Si has
at most d vertices by the degeneracy ordering, so ω(G[Si]) can be computed
in Td = O(2d/4) time. Thus, using p ≤ n processors, the algorithm runs in
O(m+ n

p (m+Td)) time. Correctness of the algorithm follows by Lemma 1.

Corollary 1. The maximum clique problem is solvable in O(nm) time in the
class of graphs for which d ≤ 4 log2m+O(1).

We now move on to the second maximum clique algorithm (Algorithm 3),
based on the community-degeneracy. The algorithm achieves a smaller exponent
at the cost of a larger polynomial factor (m instead of n). First we give an
efficient algorithm for computing community-degeneracy.

Data: A graph G = (V,E)
Result: A community-degeneracy edge-ordering (e1, . . . , em)
H ← G;
for i = 1, . . . ,m do

find an edge e = {u, v} in H that minimizes |NH(u) ∩NH(v)|;
ei ← e;
H ← H − e;

end
return (e1, . . . , em);

Algorithm 2: An algorithm for finding a community-degeneracy edge-
ordering.

4

Lemma 2. Algorithm 2 finds a community-degeneracy ordering and can be
implemented to run in O(nm) time.

Proof. The correctness is clear, so we are left with devising data structures that
achieve O(nm) time. The idea is to mimic the data structures used in the
degeneracy algorithm [9], but instead of using an adjacency list of the neighbors
for each vertex, we have an intersection list for each edge e = {u, v} that lists
the vertices from N(u)∩N(v). Clearly, the intersection list of an edge contains
at most n − 2 vertices, and since N(u) ∩ N(v) can be obtained in O(n) time,
generating all such lists takes O(nm) time.

Let DH(e) = |NH(u)∩NH(v)|. To execute the steps in the for-loop, instead
of updating the intersection lists at each iteration, it is possible to keep track of
the edges that have not been removed using a bucket structure. This structure
is comprised of n−1 buckets (namely, {0, 1, . . . , n−2}) and an array of headers
pointing to one of the elements in each bucket. The buckets are stored as linked
lists and are initialized while creating the intersection lists. At each iteration
of the for-loop, if edge e is still in H, it is stored in bucket DH(e). Identifying
the edge to be removed can be done in O(n) time by searching for the first
nonempty bucket. Furthermore, whenever an edge e = {u, v} is removed from
H, the algorithm scans the intersection list of e checking if edges e′ = {u,w}
and e′′ = {v, w} remain in H, for all w in the list. If e′ or e′′ were not removed
before, they are relocated to buckets DH(e′)− 1 and DH(e′′)− 1, respectively.
Scanning the intersection list takes O(n) time, and any edge relocation in a
linked list takes constant time. Thus, since the algorithm removes all m edges
and every iteration takes O(n) time, the algorithm runs in O(nm) time.

Lemma 3. Let (e1, . . . , em) be any edge-ordering of an m-edge graph G = (V,E)
with m ≥ 1. Denote by ω(G) the size of a maximum clique in a graph G. Then,

ω(G) = 2 + max
1≤i≤m

ω(Gi), (2)

where ei = {ui, vi}, Ei = {ei, . . . , em}, Si = NG[Ei](ui) ∩NG[Ei](vi), and Gi =
(Si, Ei ∩ (Si × Si)).

Proof. First see that ω(G) ≥ 2 + ω(Gi) for any edge ei = {ui, vi} ∈ E; take a
maximum clique in Gi and add vertices ui and vi. Now we show the reverse
inequality. Let S be a maximum clique in G and let ei∗ = {ui∗ , vi∗} be the
earliest edge of G[S] in the edge-ordering. Then every vertex in S \ {ui∗ , vi∗}
belongs to Gi∗ and every pair of vertices in S \ {ui∗ , vi∗} is adjacent in Gi∗ , so
ω(Gi∗) ≥ ω(G)− 2.

5

Data: A graph G = (V,E)
Result: The clique number ω(G)
compute a community-degeneracy edge-ordering (e1, . . . , em) of G;
for i = 1, . . . ,m do
{ui, vi} ← ei;
Ei ← {ei, . . . , em};
Si ← NG[Ei](ui) ∩NG[Ei](vi);
Gi ← (Si, Ei ∩ (Si × Si));
// call Robson’s algorithm [10]

ω(Gi)← MaxCliqueSubroutine(Gi);

end
return ω(G) = 2 + max1≤i≤m ω(Gi);

Algorithm 3: A maximum clique algorithm parameterized by community-
degeneracy.

Theorem 2. Algorithm 3 solves the maximum clique problem in c-community-
degenerate graphs in O(m2 +mTc) = O(m2 +m2c/4) time. Using m processors,
this reduces to O (nm+ Tc) time.

Proof. The community-degeneracy ordering (e1, . . . , em) can be found in O(nm)
time by Lemma 2. The for-loop can be run in parallel. The set Si can be
found in O(m) time. It consists of those vertices w ∈ V such that the edges
{ui, w}, {vi, w} occur after edge ei = {ui, vi} in the edge-ordering. We argue
that the subgraph Gi can be found in O(m) time. Check each edge e that
appears after ei in the edge-ordering. If both of its incident vertices belong to
Si then add e to Gi. See that Si has at most c vertices by the community-
degeneracy ordering, so ω(Gi) can be computed in Tc = O(2c/4) time. Thus,
using p ≤ m processors, the algorithm runs in O(nm+ m

p (m+ Tc)) time. Cor-
rectness of the algorithm follows by Lemma 3.

3 Conclusion

We have provided two algorithms for the maximum clique problem in sparse
graphs. The algorithms give theoretical evidence that the maximum clique
problem can be solved more quickly in sparse graphs than in arbitrary graphs.
It remains to be seen which of the two algorithms performs better in practice.
In this work, we focus on the worst-case running time of these algorithms; their
computational performance will be investigated in a subsequent paper.

Incidentally, this paper gives algorithms for dense instances of maximum
independent set or of vertex cover. We suspect that many other algorithms for
NP-hard graph problems can be parameterized by degeneracy or co-degeneracy
(the degeneracy of the complement graph). This seems to be a promising area
for algorithms research due to the ubiquity of low-degeneracy power-law graphs
in practice.

6

Acknowledgements

This material is based upon work supported by the AFRL Mathematical Mod-
eling and Optimization Institute. Partial support by AFOSR under grants
FA9550-12-1-0103 and FA8651-12-2-0011 is also gratefully acknowledged.

References

[1] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner. Graph parti-
tioning and graph clustering, volume 588. American Mathematical Society,
2013.

[2] G. Bianconi and M. Marsili. Emergence of large cliques in random scale-free
networks. Europhysics Letters, 74(4):740, 2006.

[3] I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo. The maximum
clique problem. In Handbook of combinatorial optimization, pages 1–74.
Springer, 1999.

[4] N. Bourgeois, B. Escoffier, V. T. Paschos, and J. M. M. van Rooij. Fast
algorithms for max independent set. Algorithmica, 62(1–2), 382–415, 2012.

[5] C. Bron and J. Kerbosch. Algorithm 457: finding all cliques of an undi-
rected graph. Communications of the ACM, 16(9):575–577, 1973.

[6] F. Chung. Graph theory in the information age. Notices of the AMS,
57(6):726–732, 2010.

[7] D. Eppstein, M. Löffler, and D. Strash. Listing all maximal cliques in sparse
graphs in near-optimal time. Algorithms and Computation, pages 403–414,
2010.

[8] D. R. Lick and A. T. White. k-degenerate graphs. Canad. J. Math, 22:1082–
1096, 1970.

[9] D. W. Matula and L. L. Beck. Smallest-last ordering and clustering and
graph coloring algorithms. Journal of the ACM, 30(3):417–427, 1983.

[10] J. M. Robson. Finding a maximum independent set in time O(2n/4). Tech-
nical report, LaBRI, Université de Bordeaux I, 2001.

[11] A. Verma, A. Buchanan, and S. Butenko. Solving the maximum clique and
vertex coloring problems on very large sparse networks. Working paper,
Department of Industrial and Systems Engineering, Texas A&M University,
College Station, TX, 2012.

7

