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Abstract

This paper explores techniques for solving the maximum clique and
vertex coloring problems on very large-scale real life networks. Due to the
size of such networks and the intractability of the considered problems,
previously developed exact algorithms may not be directly applicable.
The proposed approaches aim to reduce the network instances to a size
that is tractable for existing solvers, while preserving optimality. Two
clique relaxation structures are exploited for this purpose. In addition
to the known k-core structure, a newly introduced clique relaxation, k-
community, is used to further reduce the instance size. Experimental
results on real life graphs (collaboration networks, P2P networks, social
networks, etc.) show the proposed procedures to be effective by finding,
for the first time, exact solutions for instances with over 18 million vertices.

1. Introduction

A simple undirected graph, denoted by G = (V,E), is defined by a set of vertices
V , and a set of edges E representing the pairs of vertices that are adjacent.
Graphs can be used to represent information in a very concise manner based
on pairwise relationships between entities. A clique, defined as a subset of
vertices that are all pairwise adjacent, is a graph-theoretic concept often used
to represent dense clusters. Cliques are key in the development of many graph-
based data mining approaches for the analysis of networks arising in diverse
application areas, such as social, communication, and biological systems (Bomze
et al. 1999, Butenko and Wilhelm 2006).

The maximum clique problem is to find a clique of maximum cardinality in
the given graph. The size of a maximum clique in G is known as the clique
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number of G, denoted by ω(G). Vertex coloring is another classical combinato-
rial optimization problem. A proper vertex coloring refers to an assignment of
a color to each vertex such that no two adjacent vertices have the same color.
The vertex coloring problem is to find a proper coloring that uses the fewest
number of colors, known as the chromatic number of G, denoted by χ(G). The
vertex coloring problem has applications in scheduling and timetabling, regis-
ter allocation, frequency assignment, and air traffic flow management (Malaguti
and Toth 2010, Pardalos et al. 1998).

The maximum clique and vertex coloring problems have captured the at-
tention of many researchers in computer science and operations research. Both
problems are among Karp’s original 21 problems shown to be NP-complete (Karp
1972) and are known to be hard to approximate (H̊astad 1999, Feige and Kil-
ian 1998, Zuckerman 2007). Numerous techniques for solving the maximum
clique problem have been developed, including exact methods using integer pro-
gramming, implicit enumeration and scale reduction approaches (Carraghan and
Pardalos 1990, Corno et al. 1995, Balas and Xue 1996, Wood 1997, Österg̊ard
2002, Tomita and Seki 2003, Butenko and Trukhanov 2007), as well as heuris-
tics and meta-heuristics (Gendreau et al. 1993, Protasi et al. 1995, Abello et al.
1999, Katayama et al. 2005). Similarly, many exact approaches – implicit enu-
meration, integer and constraint programming (Campêlo et al. 2008, Hansen
et al. 2009, Méndez-Dı́az and Zabala 2006, Mehrotra and Trick 1995, Gua-
landi and Malucelli 2012, Held et al. 2012, Malaguti et al. 2011), and heuristics
(Brélaz 1979, Bollobás and Thomason 1985, Culberson and Luo 1996, Mor-
genstern 1996) – have been proposed for the vertex coloring problem. Despite
these efforts, there are still unsolved clique instances with 1024 vertices (N. J.
A. Sloane Last accessed: February 2017) and unsolved coloring instances with
fewer than 200 vertices (Malaguti and Toth 2010).

Recent advances in information technology have resulted in data sets that
are much larger than what most exact algorithms have been designed for and
tested on. Many real life networks of interest are very large, with tens of mil-
lions of vertices, and have low edge densities, with the degrees of vertices often
following a power-law distribution (Newman 2003). It should be noted that
the maximum clique and vertex coloring problems remain hard to approximate
when restricted to power-law graphs, unless NP=ZPP (Shen et al. 2012).

There is limited existing research on solving the maximum clique problem
in the very large, sparse graphs. Many existing approaches for solving the max-
imum clique problem rely heavily on an adjacency matrix representation of the
graph. Graphs with millions of vertices will simply not fit into a computer’s
working memory when stored in this way (e.g., a graph with 10 million vertices
would require 11.4 TB of memory). So, most existing maximum clique imple-
mentations are not directly applicable. Accordingly, heuristic algorithms are
frequently used, although they do not provide any guarantee of the quality of
the optimal solution. One of the key properties of power-law graphs that can be
exploited in designing algorithms for the problems of interest is the presence of a
large number of low-degree vertices, which can be removed without changing the
clique and chromatic numbers of the graph. This observation motivated the so-
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called “peeling” scale reduction technique proposed by Abello et al. (1999), who
attempted to solve the maximum clique problem on a graph with 53,767,087
vertices and over 170 million edges representing AT&T call data. Its largest
connected component had 44,989,297 vertices and contained a clique of size 30,
which was found using GRASP metaheuristic. Applying a peeling procedure
that recursively removed vertices of degree less than 30, they managed to bring
the size of the problem instance down to 8,724 vertices and about 320,000 edges.
This graph was guaranteed to contain any clique of size 31 or more if one exists;
however, the largest clique Abello et al. (1999) were able to find using GRASP
contained 30 vertices. As for the vertex coloring problem, we are not aware of
any work targeting graphs with more than several thousand vertices.

In this paper, we present some advances in scale reduction methods for
the maximum clique problem and the vertex coloring problem in very large
sparse graphs. The proposed techniques allow one to extend the applicability
of existing exact algorithm implementations to larger graphs, where they fail
if applied directly. The algorithms have been tested on graphs with up to 18
million vertices originating from some real life applications. The organization
of the rest of the paper is as follows. Section 2 presents clique relaxations used
to devise scale reduction approaches. Section 3 is devoted to the maximum
clique problem in very large sparse graphs. Section 4 presents scale reduction
approaches for the vertex coloring problem, and finally Section 5 concludes the
paper.

2. Cores and Communities

The scale reduction approach used by Abello et al. (1999) for finding large
cliques in a massive telecommunication network was based on the so-called
“peeling” procedure, which, given a heuristically computed clique C of size k in
G, recursively removes vertices of degree less than k. Obviously, such vertices
cannot belong to any clique of size k+1 or greater, hence their removal does not
impact cliques containing more vertices than C. Thus, if C is not a maximum
clique of G, the graph obtained as the result of applying the peeling procedure
must contain all maximum cliques of G. The peeling procedure is effectively an
algorithm for computing the largest k-core of G, which is formally defined next.
Given a graph G = (V,E) and S ⊆ V , G[S] denotes the subgraph induced by
S, and δ(G) is the minimum degree of G.

Definition 1 (k-core; degeneracy). A subset S ⊆ V of vertices is called a k-core
if δ(G[S]) ≥ k. The largest k for which G has a nonempty k-core is called the
degeneracy of G.

It should be noted that a k-core of a graph as presented in Definition 1 may
not be unique. However, the maximum k-core is unique and can be found in
linear time by iteratively removing a vertex if its degree is less than k (Matula
and Beck 1983). In fact, the same algorithm computes the degeneracy of a
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graph in linear time. Consult Lick and White (1970) for more information
about degeneracy.

One hurdle encountered by Abello et al. (1999) was that the peeling proce-
dure did not yield a sufficient reduction in the graph size to employ an exact
algorithm. As a result, they were not able to guarantee optimality of the solu-
tions they computed. This can be attributed to the weakness of k-cores as clique
relaxations. In the following, we present a different clique relaxation structure
called k-community that can be used for scale reduction purposes, and study
the properties of k-community to ascertain its relative strength when compared
to k-cores.

It should be noted that Cohen (2008) introduced what they called k-truss
for finding cohesive subgraphs for social network analysis. A k-truss is defined
as a connected subgraph with each edge being a part of at least k− 2 triangles.
This implies that any clique of size k induces a k-truss. However, to maintain
consistency with the definition of k-cores, we define a k-community as follows.

Definition 2 (k-community). A subgraph G′ = (V ′, E′) of G is called a k-
community subgraph if for each edge {u, v} ∈ E′ its incident vertices u and v
have at least k common neighbors in G′. A subset V ′ of vertices of G is called
a k-community if there exists a k-community subgraph of G that has V ′ as its
vertex set.

Observe that a clique of size k is a (k−2)-community. As is the case with the
k-core, the maximum k-community of a graph can be found in polynomial time.
Algorithm 1 describes a simple iterative procedure for finding the k-community
of a graph G. In the first iteration of the algorithm an edge is removed if its
incident vertices have fewer than k common neighbors. If no edges were removed,
the k-community of the graph has been found. Otherwise another iteration is
performed. The algorithm can be implemented by examining an edge only if one
of its neighboring edges was removed in the previous iteration. This limits the
number of times the size of the common neighborhood of an edge’s endpoints
is calculated to (2∆ + 1) times, ∆ being the highest degree of a vertex in the
graph. The overall time complexity of finding the k-community can be shown
to be O(mk∆). A brief outline of the proof is as follows: suppose m1 edges get
deleted in the first iteration. Then it takes O(m1∆) time to delete those edges,
and O(m1k∆) to investigate new ones. The second term arises because it takes
O(∆) time to investigate one edge, and there are at most 2m1k edges to be
investigated since each of the removed edges affects at most 2k edges. Similarly,
suppose m2 edges get deleted in the next iteration. Then it takes O(m2∆) time
to delete those edges, and O(m2k∆) to investigate new ones. Similarly define
m3, m4 and so on. Since

∑
imi ≤ m, the algorithm runs in O(mk∆) time. It

should be noted that, in a subsequent paper, Buchanan et al. (2013) show that
a maximum k-community (for any value of k) can be found in time O(nm).

Some elementary properties of the k-community that form the basis of the
proposed scale reduction techniques for the maximum clique problem are pro-
vided below.
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Algorithm 1 k − Community(G): Algorithm to find a k-community subgraph
of G

1: repeat
2: for every (i, j) ∈ E do
3: if |N(i) ∩N(j)| < k then
4: Remove edge {i, j} from E
5: end if
6: end for
7: until No edge is removed in the current iteration
8: Remove all isolated vertices to obtain Gk ≡ (Vk, Ek)
9: return Gk Verma, Buchanan, and Butenko: Maximum Clique and Coloring on Very Large Networks
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Property 2.1. A clique of size k is a (k − t)-community for any 2 ≤ t ≤ k.

Property 2.2. If G has no nonempty k-community, then ω(G) ≤ k + 1.

Note that the converse of Property 2.2 is not true. It can also be easily
observed that, while a k-community of G is a (k + 1)-core of G, the converse
is not true in general. This implies that a k-community is a stronger clique
relaxation when compared to a k-core. Next we establish some cohesiveness
properties of k-communities.

Theorem 1 (Cohesiveness properties of k-communities). A k-community sub-
graph G′ = (V ′, E′) with |V ′| = n satisfies the following conditions.

(a) If G′ is connected, the diameter of G′ is at most
⌊
2(n−1)
k+2

⌋
.

(b) The minimum degree δ(G′) is at least k + 1.

(c) The density of G′ is at least k+1
n−1 .

Figure 1 shows that the bound on the diameter is sharp.

Proof. Let the diameter of a given k-community subgraph G′ with n vertices
be p. Then there exist vertices u, v in the k-community such that the length
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of a shortest path between u and v in G′ is p. Let u = x0, x1, ..., xp = v be
such a shortest path. Note that xi and xi+1, i = 0, ..., (p − 1) have at least k
common neighbors. Also, since x0, x1, ..., xp is the shortest path from x0 to xp
in G′, the vertices xi, xi+1, xj , and xj+1 cannot have any common neighbors if
|i− j| ≥ 2. Hence, endpoints of every alternate edge in the path have at least k
unique common neighbors. Thus, the number of vertices in the graph satisfies

n ≥ (p+1)+k(
⌈
p
2

⌉
) ≥ (p+1)+k(p2 ) = 1+p(k+2

2 ). Hence, p ≤
⌊
2(n−1)
k+2

⌋
, which

establishes (a). Statement (b) is trivial, and (c) directly follows from (b).

3. Solving the Maximum Clique Problem on Very
Large Sparse Graphs

In this section, we devise a new scale reduction method for the maximum clique
problem based on k-communities. Property 2.2 is used to design algorithms for
finding an upper bound on the clique number, while Property 2.1 is used to
find a maximum clique as described in Algorithm 2. This algorithm requires
O(m + n) memory using the adjacency list representation. It first employs
a greedy heuristic HeuristicClique(G) for the maximum clique problem to
obtain a lower bound ωlower. Next, either binary or linear search is used in
UpperBound(G,ωlower,∆) to obtain an upper bound ωupper on the clique num-
ber. Binary search is performed in the interval [ωlower,∆ + 1] and finds the
smallest integer k such that (k + 1)-core or k-community of G is an empty set.
By Property 2.2, (k + 1) is an upper bound on the clique number. The algo-
rithm runs in O(m∆2 log ∆) time. Since finding the k-community modifies the
edge set, the whole edge set has to be duplicated from the original graph or
a previously computed (ωlower − 2)-community after each iteration. This can
take significant amounts of memory for large graphs. Therefore, a linear search
strategy is also considered that starts with k = ωlower − 2 and increments k till
the upper bound is found. Since k is incrementing, any edge that was removed
in finding k-community will also be removed in finding (k+ 1)-community, and
the whole graph does not need to be duplicated in each iteration. Although the
worst case time complexity of this algorithm is O(m∆3), it might be faster than
the binary search in practice, as it operates with a single copy of the graph,
whereas the binary search copies the graph O(log ∆) times.

Subsequently, in line 4, ScaleReduction1(G,ωupper) finds the maximum
(ωupper − 1)-core or the maximum (ωupper − 2)-community of G. If the number
of vertices in the resulting graph Gupper is sufficiently small (K = 12, 000 was
used in experiments), then a lower bound ωlower on the clique number is obtained
using the procedure FindMaxCliqueExact, which can be any exact algorithm for
the maximum clique problem that performs well on graphs with up toK vertices.
For this paper, we use the algorithm developed by Österg̊ard (2002). Since
Gupper is not guaranteed to contain a maximum clique of G, we go a step further
to obtain a reduced graph Glower in line 10 that has the same clique number as
G. Such a graph can be obtained by finding either the maximum (ωlower−1)-core
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or the maximum (ωlower − 2)-community of G in ScaleReduction2(G,ωlower).
Finally, we use an exact algorithm (Österg̊ard 2002) to find the clique number
of Glower. We considered six variations of Algorithm 2 that depend on the

Algorithm 2 FindClique(G): Algorithm to find a maximum clique of G

1: ωlower ← HeuristicClique(G)
2: ωupper ← upperBound(G,ωlower,∆)
3: if ωlower < ωupper then
4: Gupper ≡ (Vupper, Eupper)← ScaleReduction1(G,ωupper)
5: if |Vupper| ≤ K then
6: ωlower ← max{ωlower, FindMaxCliqueExact(Gupper)}
7: end if
8: end if
9: if ωlower < ωupper then

10: Glower ≡ (Vlower, Elower)← ScaleReduction2(G,ωlower)
11: for each connected component G′ = (V ′, E′) of Glower do
12: if |V ′| ≤ K then
13: ωlower ← max{ωlower, FindMaxCliqueExact(G′)}
14: end if
15: end for
16: if the clique number of each connected component is found then
17: ωupper ← ωlower

18: end if
19: end if
20: return [ωlower, ωupper]

choices of the upper bound search (binary or linear) and the scale reduction
procedures. The core-based scale reduction finds the maximum (ωupper−1)-core
of G in ScaleReduction1(G,ωupper) and the maximum (ωlower − 1)-core of G
in ScaleReduction2(G,ωlower). Similarly, the community-based scale reduction
finds the maximum (ωupper−2)-community of G in ScaleReduction1(G,ωupper)
and the maximum (ωlower−2)-community of G in ScaleReduction2(G,ωlower).
Finally, the hybrid scale reduction finds the maximum (ωupper− 1)-core of G in
ScaleReduction1(G,ωupper) and the maximum (ωlower− 2)-community of G in
ScaleReduction2(G,ωlower).

3.1. Quality of k-community-based upper bound in power-
law random graphs

While in general the community-based upper bound on the clique number can
be arbitrarily larger than the clique number, a rather tight asymptotic bound
can be established for power-law random graphs. A graph G is called a power-
law graph if the number of vertices with degree q is proportional to q−α, where
α ∈ (1, 3) is a constant. Power-law graphs are ubiquitous in nature, and many
graphs studied in literature have been empirically found to follow this struc-
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ture (Newman 2003). We characterize the quality of the upper bound ωupper on
the clique number obtained in the procedure upperBound(G,ωlower,∆) of Al-
gorithm 2 for power-law random graphs. We use the hidden variable ensemble
model for generating power-law random graphs (Bianconi and Marsili 2006):

1. A hidden continuous variable qi is assigned to each vertex i according to
the power-law distribution.

2. Each pair of vertices with hidden variables q and q′ are linked with prob-
ability

r(q, q′) =
qq′

q̄n
, (1)

where q̄ is the expectation of q, equivalently the average degree.

To ensure that the linking probabilities r(q, q′) are less than 1, we introduce
a cutoff Q =

√
q̄n on the power-law distribution. Hence, the hidden variable

distribution is as follows, where ρ0 is a scaling factor used to make the proba-
bilities sum to one.

ρ(q) =

{
ρ0q
−α, q ∈ [1, Q];

0, otherwise.
(2)

Furthermore, the cutoff Q can be estimated as Q ∼ n1/α, α ∈ (1, 2] and Q ∼
n1/2, α ∈ (2, 3). It has been shown by Bianconi and Marsili (2006) that

ω = Ω(n1/3α) and ω = O(n1/2α) if α ∈ [1, 2); (3)

ω = Ω(n(3−α)/4) and ω = O(n(3−α)/6) if α ∈ (2, 3). (4)

With this model in mind, in the rest of this section we establish some asymptotic
results that hold true with high probability – that is, the probability tends to 1
as the number n of vertices in the random graph goes to infinity.

Theorem 2. Given a power-law random graph generated from the hidden vari-
able ensemble model with coefficient α ∈ (1, 2) ∪ (2, 3), the community-based
upper bound ωupper on the clique number is O(ω3) with high probability.

Proof. The theorem follows directly from Lemmata 1 and 2 below.

Lemma 1. For a power-law random graph with exponent α ∈ [2, 3) described
using the hidden variable ensemble, the community-based upper bound ωupper on
the clique number is O(n(3−α)/2) with high probability. Furthermore, ωupper =
O(ω3) for α ∈ (2, 3).

Proof. Let Ek denote the set of edges in the k-community of G, and Etk denote
the set of edges remaining after t iterations of removing edges with endpoints
having less than k common neighbors. Further, let Gtk denote the subgraph
G[Etk] induced by the set of edges Etk. We proceed by showing that |Ek| −→ 0
with high probability for k > Θ(n(3−α)/2). Consider the probability that vertices
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i and j with hidden variables qi and qj are both connected to vertex s with
hidden variable qs in G:

wn(i, j, qs) = P ({i, s} ∈ E, {j, s} ∈ E) = r(qi, qs)r(qj , qs) =
qiqs
q̄n

qjqs
q̄n

=
qiqj
q̄2n2

q2s .

(5)
The probability that i and j are both adjacent to a randomly chosen vertex in
G is

wn(i, j) =

Q∫

1

ρ(qs)w(i, j, qs)dqs '

√
n∫

1

ρ0q
−α
s

qiqj
q̄2n2

q2sdqs '
ρ0qiqjn

−(α+1)/2

3− α . (6)

Let η(i, j) denote the number of common neighbors that i and j have in G. We
can show that

E[η(i, j)] = µη(i,j) =
ρ0qiqjn

(1−α)/2

3− α , (7)

Var[η(i, j)] = σ2
η(i,j) '

ρ0qiqjn
(1−α)/2

3− α . (8)

Now, we can observe the following using the one-sided Chebyshev’s inequality,

P (η(i, j) ≥ k) ≤
{

σ2
η(i,j)

(k−µ)2 , k > µη(i,j)

1, k < µη(i,j).
(9)

Note that since qi, qj ∈ [1,
√
n], when k > Θ(n(3−α)/2), we have k � µη(i,j).

Thus,

P (η(i, j) ≥ k) ≤
σ2
η(i,j)

k2
. (10)

Now consider the expected number of neighbors vertex i will have in the graph
G1
k as n −→∞.

E[|NG1
k
(i)|] =

√
n∫

1

nρ(qj)r(qi, qj)P (η(i, j) ≥ k)dqj (11)

≤

√
n∫

1

nρ0q
−α
j

qiqj
q̄n

σ2
η

k2
dqj ≤

n(1−α)/2ρ0q
2
i

(3− α)k2
n(3−α)/2 ≤ cq

2
i n

2−α

k2
= O(1)

(12)

since k > Θ(n(3−α)/2) and q2i ≤ n, ∀i. Similarly, the variance of the number of
neighbors can be found to be

Var[|NG1
k
(i)|] ≤ cq

2
i n

2−α

k2

(
1− q2i n

1−α

k2

)
= O(1). (13)
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Thus, using the one-sided Chebyshev’s inequality, we can claim that as n −→∞,

P (|NG1
k
(i)| ≥ k) −→ 0 (14)

and further that
P (|NG2

k
(i)| = 0) −→ 1. (15)

Thus, with high probability all the edges in Gk will be deleted, leaving the k-
community empty for any k > Θ(n(3−α)/2). Hence, the upper bound ωupper is
O(n(3−α)/2) with probability tending to 1 as n −→ ∞. From equation (4), we
can deduce that ωupper = O(ω3) with high probability.

Lemma 2. For a power-law random graph with exponent α ∈ (1, 2) obtained
using the hidden variable ensemble, the community-based upper bound ωupper

on the clique number is O(n1/α) with high probability. Furthermore, ωupper =
O(ω3) for α ∈ (1, 2).

Proof. We proceed in a similar manner as Lemma 1. Using the same notation,
we can show that

wn(i, j) ' ρ0qiqjn
3/α−1

(3− α)(q̄n)2
' ρ0qiqjn

−1/α−1

(3− α)
(16)

and

E[η(i, j)] = µη(i,j) =
ρ0qiqjn

−1/α

3− α , (17)

Var[η(i, j)] = σ2
η(i,j) =

ρ0qiqjn
−1/α

3− α . (18)

Note since qi, qj ∈ [1, n1/α], when k > Θ(n1/α), k � µη(i,j), and we have

P (η(i, j) ≥ k) ≤
σ2
η(i,j)

k2
. (19)

Now consider the expected number of neighbors vertex i will have in the graph
G1
k as n −→∞.

E[|NG1
k
(i)|] =

n1/α∫

1

nρ(qj)r(qi, qj)P (η(i, j) > k)dqj (20)

≤
n1/α∫

1

n1−3/αρ20q
2
i

(3− α)k2
q2−αj dqj ≤

n1−3/αρ20q
2
i

(3− α)2k2
n3/α−1 ≤ c q

2
i

k2
= O(1)

(21)

since k > Θ(n1/α) and qi < n1/α. Finding E[|NG1
k
(i)|] and Var[|NG1

k
(i)|] and

using the one-sided Chebyshev’s inequality as in the proof of Lemma 1, we can
deduce that all the edges in Gk will be deleted, leaving the k-community of G
empty for any k > Θ(n1/α). Thus, the upper bound ωupper is O(n1/α). We
obtain ωupper = O(ω3) using equation (3).
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3.2. Computational Results

All computational experiments reported in this paper (except for Table 4) were
conducted on a Dell Precision WorkStation T7500 R© computer running Win-
dows 7, with two Intel R© Xeon R© E5620 2.40 GHz quad-core processors and 12
GB RAM. The algorithms were implemented in the C++ programming lan-
guage using Microsoft Visual Studio 2008 environment (except for Table 4).

The test cases were obtained from the Stanford Large Network Dataset Col-
lection (Snap Last accessed: February 2017), referred to as the SNAP, and the
10th DIMACS implementation challenge (Dimacs10 Last accessed: February
2017). These databases have a collection of large networks of sizes ranging from
tens of thousands of vertices and edges to tens of millions of vertices and edges.
They include social networks, web graphs, road networks, internet networks,
citation networks, collaboration networks, random geometric graphs, and com-
munication networks. The multitude of domains these networks originate from,
along with the very large sizes of the networks, make the two datasets suitable
candidates for performing computational studies for our algorithm. For con-
ciseness, we consider all the networks that have at least 30,000 vertices and a
few cases with fewer vertices. The networks in the database that were directed
graphs were converted to an undirected graph by replacing each directed edge
with an undirected edge.

Table 1 describes the networks from the two datasets that were used for
this study. The networks in the DIMACS dataset were further classified into
two categories based on whether they follow a heavy tail degree distribution or
not. Table 2 compares the upper bounds based on k-cores and k-communities.
The number of vertices remaining in the corresponding (ωupper − 1)-core and
(ωupper − 2)-community are also reported. In addition, the table provides the
lower bounds ωlower found in the course of Algorithm 2, along with the number
of vertices remaining in the corresponding (ωlower − 1)-core and (ωlower − 2)-
community.

The largest graph considered, uk-2002, consumed 4.1 GB of hard drive space
as a text file. The implementation read the graph into memory, at which point
the process was using 3.8 GB of memory. Reading the graph from the input file
took 789 seconds, which is surprisingly longer than the time to solve maximum
clique in five out of the six approaches. The implementation’s peak memory
usage when computing a maximum clique of uk-2002 was 5.4 GB.

It can be seen that compared to the k-core upper bound, the k-community
upper bounds are significantly lower, almost by a factor of 2. This is because the
k-community is a much tighter relaxation of a clique. Furthermore, the number
of vertices remaining in the corresponding (ωupper − 1)-core and (ωupper − 2)-
community provide further evidence of the tightness of k-communities. The
lower bounds ωlower were obtained by running an exact algorithm on the cor-
responding (ωupper − 1)-cores and (ωupper − 2)-communities of the graphs. In
many cases the (ωupper−1)-cores have a large number of vertices, and the lower
bounds cannot be found this way. In such cases, the lower bound obtained from
the greedy algorithm is reported (marked by an asterisk).
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Table 1: Description of the various networks used for computations. More infor-
mation about the graphs can be obtained from (Snap Last accessed: February
2017) and (Dimacs10 Last accessed: February 2017).

Network Type Example/Description
SNAP

Social Networks Epinions.com: Who-trusts-whom network of Epinions.com.
Slashdot Slashdot social network for a month.
Wikipedia who-votes-on-whom network.

Communication Email network from a EU research institution.
Wikipedia talk (communication) network.

Citation Networks Citation network among US Patents.
Arxiv High Energy Physics paper citation network.

Web graphs Web graph of Stanford.edu.
Web graph from Google.

Product Co-purchasing Amazon product co-purchasing network for a day.
Internet P2P Gnutella peer to peer network for a day.

DIMACS10-HeavyTail
Clustering Used as benchmarks in the graph clustering.
Coauthors Social networks are created from co-authorships and citations.
Random Geometric Generated from random points in the unit square. Edges

connect vertices whose Euclidean distance is below 0.55 log(n)/n.
Kronecker Synthetic graphs created with the Kronecker generator.

DIMACS10-QuasiRegular
Matrix Florida Sparse Matrix Collection.
Walshaw Benchmarks for graph partitioning algorithms.

Table 3 provides the maximum clique sizes found by Algorithm 2, with the
time taken by six variants of the algorithm. These variants differ in the clique
relaxation used for scale reduction (k-core, k-community, and hybrid) and the
search procedure used to find the upper bounds (linear and binary search).

It can be observed that for almost all the graphs, the maximum clique was
found within a few minutes. The relative tightness of k-communities when com-
pared to k-cores is apparent not just from the upper bounds found in Table 2,
but also from the fact that many instances that could not be solved using a
k-core reduction were solved by the k-community reduction. The linear upper
bound search, which was introduced as a less memory-intensive algorithm tar-
geting large graphs, does prove to be effective in reducing the time taken by the
algorithm for the larger instances. A glance at Table 2 also suggests that the
upper bounds are fairly tight, and that the lower bounds obtained are very close
to the clique number. Amongst the three variants, the hybrid scale reduction
method with linear search seems to perform the best overall.

The results presented in this table also highlight the main contribution of
this paper in that we are able to obtain the maximum cliques for very large
scale graphs with a proof of optimality for all the graphs tested. The pool
of test instances taken is diverse, with both power-law (most of the SNAP
and DIMACS-HeavyTail instances) and fairly regularly-structured (DIMACS10-
QuasiRegular instances) graphs present. Also note that although the residual
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Table 2: Comparison of the upper bounds (ωupper) and lower bounds (ωlower)
obtained by the k-core scheme vs the k-community scheme. Comparison of
the number of vertices in the corresponding (ωupper − 1)-core, (ωupper − 2)-
community, (ωlower − 1)-core, and (ωlower − 2)-community, (nωupper

and nωlower
)

is also included. The nωupper
and nωlower

values are in bold when they are larger
than 12, 000. An asterisk marks the ωlower value when the best lower bound was
obtained from the greedy algorithm.

k-core k-comm
Graph n m ωlower ωupper nωlower

nωupper
ωlower ωupper nωlower

nωupper

SNAP
Wiki-Vote 7,115 100,762 17 54 2316 336 17 23 458 50
p2p-Gnutella04 10,876 39,994 3 8 8,379 365 4 4 12 12
p2p-Gnutella25 22,687 54,705 4 6 9,764 6,091 4 4 25 25
p2p-Gnutella24 26,518 65,369 4 6 11,478 7,480 4 4 41 41
Cit-HepTh 27,770 352,285 22 38 7,278 52 21 30 366 48
Cit-HepPh 34,546 420,877 18 31 11,284 40 18 25 193 36
p2p-Gnutella30 36,682 88,328 3 ∗ 8 20,194 14 4 4 42 42
p2p-Gnutella31 62,586 147,892 4 ∗ 7 24,222 1,004 4 4 57 57
soc-Epinions1 75,879 405,740 23 68 5,004 486 23 33 402 61
Slashdot0811 77,360 469,180 26 55 5,050 129 26 35 164 87
Slashdot0902 82,168 504,230 27 56 5,043 134 27 36 165 96
Amazon0302 262,111 899,792 7 7 286 286 7 7 105 105
Email-EuAll 265,214 364,481 16 38 1,691 292 16 20 157 62
web-Stanford 281,903 1,992,636 18 ∗ 72 34,325 387 61 62 128 64
web-NotreDame 325,729 1,090,108 155 156 1,367 1,367 155 155 155 155
Amazon0312 400,727 2,349,869 9 ∗ 11 244,256 27,046 11 11 4,534 4,534
Amazon0601 403,394 2,443,408 11 ∗ 11 32,886 32,886 11 11 5,361 5,361
Amazon0505 410,236 2,439,437 8 ∗ 11 295,845 32,632 11 11 4,878 4,878
web-BerkStan 685,230 6,649,470 201 202 392 392 201 201 392 392
web-Google 875,713 4,322,051 44 45 103 48 44 44 48 48
WikiTalk 2,394,385 4,659,565 26 132 15,807 700 26 53 1,559 237
cit-Patents 3,774,768 16,518,947 10 65 354,843 106 10 36 3,131 83

DIMACS10-HeavyTail
as-22july06 22,963 48,436 17 26 144 71 17 17 45 45
cond-mat-2005 40,421 175,691 30 30 30 30 30 30 30 30
kron g500-simple-logn16 65,536 2,456,071 136 433 6,885 694 136 285 2,513 676
caidaRouterLevel 192,244 609,066 16 ∗ 33 4,021 92 17 19 58 36
coAuthorsCiteseer 227,320 814,134 87 87 87 87 87 87 87 87
citationCiteseer 268,495 1,156,647 10 16 35,093 67 13 13 13 13
coAuthorsDBLP 299,067 977,676 115 115 115 115 115 115 115 115
cnr-2000 325,557 2,738,969 84 84 86 86 84 84 86 86
coPapersCiteseer 434,102 16,036,720 845 845 845 845 845 845 845 845
coPapersDBLP 540,486 15,245,729 337 337 337 337 337 337 337 337
eu-2005 862,664 16,138,468 387 389 405 405 387 387 391 391
in-2004 1,382,908 13,591,473 489 489 491 491 489 489 490 490
rgg n 2 21 s0 2,097,152 14,487,995 19 19 19 19 19 19 19 19
rgg n 2 22 s0 4,194,304 30,359,198 20 20 20 20 20 20 20 20
rgg n 2 23 s0 8,388,608 63,501,393 21 21 22 22 21 21 22 22
rgg n 2 24 s0 16,777,216 132,557,200 21 21 82 82 21 21 44 44
uk-2002 18,520,486 261,787,258 944 944 944 944 944 944 944 944

DIMACS10-QuasiRegular
G n pin pout 100,000 501,198 3 ∗ 8 99,942 74,227 4 4 4 4
preferentialAttachment 100,000 499,985 6 ∗ 6 100,000 100,000 6 6 7 7
smallworld 100,000 499,998 5 ∗ 8 100,000 99,737 6 ∗ 6 14,749 14,749
luxembourg.osm 114,599 119,666 2 ∗ 3 114,599 93,000 3 3 204 204
wave 156,317 1,059,331 5 ∗ 9 156,311 119,747 6 7 389 9
audikw1 943,695 38,354,076 36 ∗ 48 937,779 687,633 36 39 185,805 135
ldoor 952,203 22,785,136 21 ∗ 35 952,203 900,844 21 ∗ 21 952,203 952,203
ecology1 1,000,000 1,998,000 2 ∗ 3 1,000,000 1,000,000 2 ∗ 2 1,000,000 1,000,000
belgium.osm 1,441,295 1,549,970 3 4 1,238,894 5 3 3 7,113 7,113
333SP 3,712,815 11,108,633 3 ∗ 5 3,712,815 2,261,408 4 4 28 28
cage15 5,154,859 47,022,346 6 ∗ 26 5,135,355 27,712 6 ∗ 6 520,172 520,172
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Table 3: Maximum clique sizes found by Algorithm 2, and the time (in CPU
seconds) taken by k-community, k-core, and hybrid scale reductions when using
binary and linear search for finding the upper bound. The best time of comput-
ing an optimal solution for each instance is shown in bold. The cases in which
optimality of the clique found could not be validated are shown in parentheses.

Binary Linear
Graph n m ω k-Core k-Comm Hybrid k-Core k-Comm Hybrid

SNAP
Wiki-Vote 7,115 100,762 17 0.20 0.19 0.19 0.19 0.20 0.19
p2p-Gnutella04 10,876 39,994 4 1.42 0.06 0.66 0.97 0.06 0.97
p2p-Gnutella25 22,687 54,705 4 2.56 0.06 1.34 2.54 0.05 1.31
p2p-Gnutella24 26,518 65,369 4 2.95 0.08 1.28 2.87 0.09 1.19
Cit-HepTh 27,770 352,285 23 1.40 0.92 0.42 1.42 0.92 1.42
Cit-HepPh 34,546 420,877 19 2.79 0.23 0.81 2.75 0.22 1.33
p2p-Gnutella30 36,682 88,328 4 (0.16) 0.20 0.14 (0.08) 0.19 0.09
p2p-Gnutella31 62,586 147,892 4 (0.20) 0.03 0.20 (0.08) 0.03 0.09
soc-Epinions1 75,879 405,740 23 1.01 0.97 0.67 1.39 0.95 1.39
Slashdot0811 77,360 469,180 26 0.97 0.22 0.53 1.50 0.22 1.51
Slashdot0902 82,168 504,230 27 1.00 0.23 0.52 1.50 0.23 1.50
Amazon0302 262,111 899,792 7 1.76 0.75 1.76 0.28 0.34 0.28
Email-EuAll 265,214 364,481 16 0.22 0.20 0.20 0.22 0.22 0.22
web-Stanford 281,903 1,992,636 61 5.18 4.07 5.16 2.43 4.07 2.42
web-NotreDame 325,729 1,090,108 155 0.27 0.59 0.28 0.28 0.59 0.28
Amazon0312 400,727 2,349,869 11 5.32 2.85 5.24 2.01 2.06 54.82
Amazon0601 403,394 2,443,408 11 4.88 1.79 5.45 1.31 1.78 40.12
Amazon0505 410,236 2,439,437 11 4.91 2.82 5.05 1.83 1.70 25.48
web-BerkStan 685,230 6,649,470 201 13.26 26.54 13.65 10.75 26.61 10.51
web-Google 875,713 4,322,051 44 4.15 3.74 4.13 1.87 3.31 1.83
WikiTalk 2,394,385 4,659,565 26 (10.56) 9.91 13.39 (8.33) 9.91 11.23
cit-Patents 3,774,768 16,518,947 11 (31.75) 20.64 32.51 (18.22) 16.63 18.81

DIMACS10-HeavyTail
as-22july06 22,963 48,436 17 0.02 0.03 0.03 0.01 0.02 0.02
cond-mat-2005 40,421 175,691 30 0.22 0.25 0.33 0.28 0.27 0.27
kron g500-simple-logn16 65,536 2,456,071 136 656.34 769.25 657.44 656.99 767.90 656.01
caidaRouterLevel 192,244 609,066 17 0.44 0.13 0.45 0.44 0.13 0.45
coAuthorsCiteseer 227,320 814,134 87 0.70 0.48 0.47 0.70 0.44 0.76
citationCiteseer 268,495 1,156,647 13 (2.07) 0.89 2.11 1.44 0.90 1.44
coAuthorsDBLP 299,067 977,676 115 0.37 0.42 0.45 0.39 0.41 0.41
cnr-2000 325,557 2,738,969 84 19.66 14.51 19.63 4.15 15.04 4.15
coPapersCiteseer 434,102 16,036,720 845 3.42 4.98 3.43 3.54 4.98 3.42
coPapersDBLP 540,486 15,245,729 337 1.97 3.42 1.93 1.93 3.46 1.95
eu-2005 862,664 16,138,468 387 83.74 279.31 84.04 15.54 1,644.54 15.59
in-2004 1,382,908 13,591,473 489 15.43 54.88 15.59 15.49 54.87 15.52
rgg n 2 21 s0 2,097,152 14,487,995 19 1.29 1.73 1.29 1.28 1.70 1.28
rgg n 2 22 s0 4,194,304 30,359,198 20 2.65 3.25 2.65 2.67 3.21 2.64
rgg n 2 23 s0 8,388,608 63,501,393 21 4.99 5.07 5.01 4.99 5.07 4.99
rgg n 2 24 s0 16,777,216 132,557,200 21 25.99 17.00 26.40 20.14 17.15 20.23
uk-2002 18,520,486 261,787,258 944 182.16 377.79 182.49 146.52 4,013.36 145.30

DIMACS10-QuasiRegular
G n pin pout 100,000 501,198 4 (0.39) 0.45 0.70 (0.19) 0.39 0.59
preferentialAttachment 100,000 499,985 6 0.94 0.33 0.92 0.14 0.31 0.23
smallworld 100,000 499,998 6 (0.28) 0.31 0.52 (0.11) 0.22 2.04
luxembourg.osm 114,599 119,666 3 (0.28) 0.17 0.30 (0.22) 0.09 0.30
wave 156,317 1,059,331 6 (0.80) 1.15 1.92 (0.34) 0.80 39.19
audikw1 943,695 38,354,076 36 (27.39) 19.11 48.48 (7.38) 17.41 97.20
ldoor 952,203 22,785,136 21 (9.08) 39.81 45.24 (2.62) 21.12 223.96
ecology1 1,000,000 1,998,000 2 (1.58) 1.25 1.81 (0.76) 0.81 1.70
belgium.osm 1,441,295 1,549,970 3 2.20 3.81 2.31 1.54 2.18 1.54
333SP 3,712,815 11,108,633 4 (70.03) 18.10 136.85 (116.43) 9.39 85.36
cage15 5,154,859 47,022,346 6 (16.61) 17.66 44.62 (14.13) 12.12 27.08
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graphs ((ωupper− 2)-communities and (ωupper− 1)-cores) are quite large for the
DIMACS10-QuasiRegular graphs, the greedy clique is the same size as the up-
per bound found, not requiring an exact algorithm at all. To the best of our
knowledge, the current paper represents the first published attempt to solve
the maximum clique problem to optimality in very large scale networks in a
systematic fashion. In other related publications the focus was on computing
all maximal cliques (Modani et al. 2010, Lu et al. 2010, Cheng et al. 2011, Epp-
stein and Strash 2011). In particular, Modani et al. (2010) used scale-reduction
techniques similar to those proposed in this paper on two graph instances rep-
resenting telecommunication data in order to enumerate all maximal cliques of
size exceeding a given threshold. Lu et al. (2010) propose a distributed algo-
rithm and applied it to 11 SNAP instances on an 80-node computer cluster.
Cheng et al. (2011) developed an external memory algorithm and tested it on
4 instances. Finally, Eppstein and Strash (2011) compare the performance of
several algorithms for enumerating all maximal cliques on large sparse graphs,
including 13 SNAP instances. This implementation, which will be called ES, is
used for comparison purposes.

Table 4 compares the runtimes of the hybrid approach with the imple-
mentation of Eppstein and Strash (2011) which is publicly available at http:

//www.ics.uci.edu/~dstrash/quick-cliques.tar.gz. It should be noted
that ES solves a different problem—the problem of listing all maximal cliques,
whereas our implementation finds a single maximum clique. Second, our initial
implementation was written for a Windows machine, whereas their code is for
Unix. In order to compare the implementations more fairly, we first ported
our code to Unix. We then modified our code to rely on the ES implentation
to compute degeneracy. Then both codes were executed on the same machine
running CentOS with one Intel R© Xeon R© W3520 2.67 GHz quad-core proces-
sor and 12GB RAM. (The other computational experiments reported in this
paper were gathered from a different machine that runs Windows 7.) The ES
implementation performs well in most cases. However, on some instances the
ES implementation did not finish with 10 hours. This is due, in part, to large
memory use; all 12 GB was being used for those instances.

4. Solving the Vertex Coloring Problem on Very
Large Sparse Graphs

Although vertex coloring is a celebrated problem, most literature devoted to
solving it focuses on small instances with up to a thousand vertices, with nu-
merous benchmark instances still unsolved (Malaguti and Toth 2010). In this
section, we look at the vertex coloring problem on large sparse instances. To
the best of our knowledge, there are no published results for vertex coloring
on graphs of the scales being considered in this paper. The largest graph for
which the chromatic number is reported in a recent survey by Malaguti and Toth
(2010) has 3,600 vertices. The primary pretext of the scale reduction method for
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Table 4: A comparison of the hybrid approach with ES (Eppstein and Strash
2011). If the computation was not completed after 36,000 seconds, it was
aborted and denoted in the table by “Time Limit.”

Graph n m ω ES Time Hybrid Time
SNAP

Wiki-Vote 7,115 100,762 17 0.88 0.14
p2p-Gnutella04 10,876 39,994 4 0.04 0.01
p2p-Gnutella25 22,687 54,705 4 0.08 0.59
p2p-Gnutella24 26,518 65,369 4 0.08 0.88
Cit-HepTh 27,770 352,285 23 1.33 0.14
Cit-HepPh 34,546 420,877 19 1.13 0.14
p2p-Gnutella30 36,682 88,328 4 0.12 0.02
p2p-Gnutella31 62,586 147,892 4 0.23 0.07
soc-Epinions1 75,879 405,740 23 3.56 0.31
Slashdot0811 77,360 469,180 26 1.61 0.17
Slashdot0902 82,168 504,230 27 1.80 0.20
Amazon0302 262,111 899,792 7 1.43 0.28
Email-EuAll 265,214 364,481 16 0.89 0.18
web-Stanford 281,903 1,992,636 27 3.81 4.48
web-NotreDame 325,729 1,090,108 155 1.57 0.20
Amazon0312 400,727 2,349,869 11 3.92 2.15
Amazon0601 403,394 2,443,408 11 4.04 2.12
Amazon0505 410,236 2,439,437 11 4.04 1.90
web-BerkStan 685,230 6,649,470 201 14.98 8.70
web-Google 875,713 4,322,051 44 6.75 1.22
WikiTalk 2,394,385 4,659,565 26 165.94 7.53
cit-Patents 3,774,768 16,518,947 11 43.24 11.38

DIMACS10-HeavyTail
as-22july06 22,963 48,436 17 0.08 0.01
cond-mat-2005 40,421 175,691 30 0.25 0.01
kron g500-simple-logn16 65,536 2,456,071 136 Time Limit 524.49
caidaRouterLevel 192,244 609,066 17 1.26 0.34
coAuthorsCiteseer 227,320 814,134 87 1.16 0.08
citationCiteseer 268,495 1,156,647 13 2.52 0.54
coAuthorsDBLP 299,067 977,676 115 1.60 0.08
cnr-2000 325,557 2,738,969 84 5.89 3.03
coPapersCiteseer 434,102 16,036,720 845 37.66 2.87
coPapersDBLP 540,486 15,245,729 337 27.26 1.47
eu-2005 862,664 16,138,468 387 56.69 31.51
in-2004 1,382,908 13,591,473 489 77.10 11.53
rgg n 2 21 s0 2,097,152 14,487,995 19 19.22 0.75
rgg n 2 22 s0 4,194,304 30,359,198 20 41.37 1.57
rgg n 2 23 s0 8,388,608 63,501,393 21 98.92 3.18
rgg n 2 24 s0 16,777,216 132,557,200 21 Time Limit 14.06
uk-2002 18,520,486 261,787,258 944 Time Limit 87.60

DIMACS10-Quasi-Regular
G n pin pout 100,000 501,198 4 0.69 0.31
preferentialAttachment 100,000 499,985 6 0.72 0.22
smallworld 100,000 499,998 6 0.59 0.34
luxembourg.osm 114,599 119,666 3 0.20 0.19
wave 156,317 1,059,331 6 1.43 0.68
audikw1 943,695 38,354,076 36 79.18 14.75
ldoor 952,203 22,785,136 21 24.97 10.54
ecology1 1,000,000 1,998,000 2 2.19 0.66
belgium.osm 1,441,295 1,549,970 3 2.87 0.65
333SP 3,712,815 11,108,633 4 17.71 115.94
cage15 5,154,859 47,022,346 6 65.02 22.19
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vertex coloring presented in this section can be established using the following
observations.

Lemma 3. Suppose the k-core of G has been properly colored. Then the re-
maining vertices in G can be colored using at most k colors.

Proof. Let Ck be the k-core of G, and let v1, v2, .., vnk be the order in which the
vertices in G were removed to obtain Ck. This means that when the vertex vi
was removed, its degree in G[Ck ∪ {vi+1, .., vnk}] was less than k. Now suppose
we have a valid coloring for G′ = G[Ck] which uses colors {1, 2, .., c}. Then,
since vnk is adjacent to less than k vertices in G′, it can be assigned a color
from {1, 2, .., k} and added to G′ without violating the properness of the color-
ing. This process can be repeated by coloring and adding vnk−1, vnk−2, .., v1 to
G′ in the order provided to ensure that the new vertices added use only colors
in {1, 2, .., k}.

Theorem 3. Let Ck ⊆ V denote the k-core of a graph G = (V,E). The follow-
ing inequalities hold.

χ(G[Ck]) ≤ χ(G) ≤ max{χ(G[Ck]), k} (22)

Consequently, G is k-colorable if and only if G[Ck] is k-colorable.

Proof. Let G′ = G[Ck]. The first inequality holds since χ(G′) ≤ χ(G) for any
subgraph G′ of G. The second inequality follows directly from Lemma 3.

4.1. Scale Reduction Algorithm

With the above properties in mind, Algorithm 3 aims to solve the vertex coloring
problem on large graphs if an effective algorithm ExactColoring is available for
solving the vertex coloring problem on smaller graphs. The algorithm makes use
of Theorem 3 to establish upper and lower bounds for the chromatic number.
We start with k set to the largest integer k′ such that the k′-core (denoted by
Ck henceforth) is non-empty (i.e., k′ is the degeneracy of G). Lower bounds are
obtained using ExactColoring on G′ = G[Ck], and upper bounds by coloring
the remaining vertices in G as done in the proof of Lemma 3. If the bounds are
not tight, then we decrease k by 1, increasing the size of G′. ExactColoring

on G′ will provide a lower bound that can be no worse, and potentially better
(since χ(G[Ck−1]) ≥ χ(G[Ck])). Reducing k further increases the possibility of
reaching one of the stopping criteria of Algorithm 3, c1 ≥ k. A better upper
bound might also be obtained by coloring the remaining vertices of G starting
with the colors obtained by optimally coloring G′. A major issue with the ef-
fectiveness of the algorithm is that as we reduce k, the size of the k-core(G)
becomes larger, and can eventually result in ExactColoring being unable to
obtain an optimal coloring within a reasonable time. If that is the case, then
this algorithm fails to obtain the optimal coloring to the whole graph and we
report the best upper and lower bounds found.
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Algorithm 3 Color(G): Algorithm to find a vertex coloring of G

1: χlower ← ω(G)
2: k′ ← the degeneracy of G
3: χupper ← k′ + 1
4: k ← k′

5: while χlower < χupper do
6: c1 ← ExactColoring(k−core(G))
7: if c1 ≥ k then
8: return [c1, c1]
9: else

10: Heuristically color the remaining vertices in G using c2 ≤ k colors.

11: χlower ← max{χlower, c1}
12: χupper ← min{χupper,max{c1, c2}}
13: end if
14: k ← k − 1
15: end while
16: return [χlower, χupper]

4.2. Heuristics for Improving Lower and Upper Bounds

Before employing the while loop in Algorithm 3, various steps can be taken to
improve the lower and upper bounds on the chromatic number. It is possible to
obtain improved upper bounds by using heuristic algorithms developed in the
literature (Matula and Beck 1983, Brélaz 1979, Malaguti and Toth 2010). Fur-
thermore, improved lower bounds can be obtained by selecting subgraphs G′ of
G that could potentially require many colors in an optimal coloring computable
using ExactColoring. For improving the upper bound, we used heuristics to
color the graph G. There are plenty of greedy algorithms that use different
vertex orderings and color the vertices using one of the available colors. These
heuristics are variations of the sequential greedy algorithm (SEQ) (Malaguti
and Toth 2010) and often exhibit poor performance, but their speed is valuable
when dealing with large graphs. For example, Matula and Beck (1983) con-
sider an ordering based on core decomposition, which is to iteratively remove
a least degree vertex from the graph, and to color vertices in the reverse order
of their removal. This ordering has been originally proposed by Szekeres and
Wilf (1968). Unlike other SEQ-based algorithms, this ordering ensures that the
number of colors used does not exceed the degeneracy number of the graph
by more than one (Szekeres and Wilf 1968). A more sophisticated technique
is DSATUR, which orders vertices dynamically, coloring the vertex with most
forbidden colors first (Brélaz 1979). For the computational results reported in
this section, the following heuristics were used.

• Degeneracy: Coloring with k′+1 colors, where k′ is the degeneracy of G.

• SEQ: Color vertices according to a given ordering,
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– SEQ-Inorder: Original vertex ordering;

– SEQ-Degree: Descending order of degree;

– SEQ-Core: Core decomposition-based ordering.

• DSATUR: Color the vertex with most forbidden colors first. If all colors
are forbidden, add a new color.

In order to improve the lower bound on the chromatic number, we find the chro-
matic number of a subgraph G′. Again, there is a tradeoff involved in choosing
how big a subgraph we select – a large subgraph will provide a better bound,
but might not be tractable itself, and a small subgraph might not provide a
good bound at all. In this paper, we use the following subgraphs:

• Clique+Neighborhood: Use a maximum clique as the initial subgraph,
and if the size of the subgraph is less than the solvability threshold add
neighboring vertices till the threshold is reached.

• Core decomposition: Keep removing a least-degree vertex till the total
number of vertices left does not exceed the solvability threshold.

• k-Community: Use the k-community for the largest k such that k-
community is non-empty.

The (solvability) threshold for the number of vertices to be used in all of the
above sub-graphs is determined by the performance of the ExactColoring algo-
rithm, and was set at 100 vertices for the results presented in this section. The
ExactColoring algorithm used was ‘Backtrack DSATUR’; its implementation
is available from (Culberson Last accessed: February 2017).

4.3. Computational Results

For testing the effectiveness of our scale reduction approach, we used the same
test instances that were used for the maximum clique problem. Table 5 reports
the results, including the method that provided the best lower and upper bound
for each instance. As can be seen from the table, we could find provably optimal
coloring for 33 of 53 instances tested. Furthermore, for 30 instances out of the
33 that were solved (and for 45 out of all 53 instances), the best lower bound
was found to be the same as the clique number. Note that the k-community ap-
proach has never yielded the best lower bound. For 20 of the 33 instances solved
(27 of 53 total) the best computed upper bound was found using degeneracy.
On 11 occasions the degeneracy bound was further improved in the while-loop
of Algorithm 3. In 7 of these cases the improvement was sufficient for proving
optimality.

5. Conclusion

This paper introduces scale reduction algorithms based on clique relaxations
such as k-community and k-core to find the maximum cliques and vertex col-
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Table 5: lower and upper bounds on the chromatic number as obtained by Al-
gorithm 3. The instances where the optimal coloring was found are highlighted
in bold.

Graph n m ω χlower χupper k′ + 1 %Gap Best LB Best UB Time(s)

SNAP
Wiki-Vote 7115 100762 17 19 24 54 20.83 CliqueNhood DSATUR 604.67
p2p-Gnutella04 10876 39994 4 4 6 8 33.33 Clique DSATUR 3.68
p2p-Gnutella25 22687 54705 4 4 6 6 33.33 Clique Degeneracy 14.27
p2p-Gnutella24 26518 65369 4 4 6 6 33.33 Clique Degeneracy 19.29
Cit-HepTh 27770 352285 23 23 25 38 8.00 Clique while-loop 29.90
Cit-HepPh 34546 420877 19 19 21 31 9.52 Clique while-loop 42.89
p2p-Gnutella30 36682 88328 4 4 6 8 33.33 Clique while-loop 33.33
p2p-Gnutella31 62586 147892 4 4 6 7 33.33 Clique DSATUR 5.26
soc-Epinions1 75879 405740 23 25 30 68 16.67 CliqueNhood DSATUR 608.15
Slashdot0811 77360 469180 26 29 29 55 0.00 k-core while-loop 2.70
Slashdot0902 82168 504230 27 29 29 56 0.00 k-core while-loop 4.00
Amazon0302 262111 899792 7 7 7 7 0.00 Clique Degeneracy 1.30
Email-EuAll 265214 364481 16 18 20 38 10.00 k-core while-loop 642.18
web-Stanford 281903 1992636 61 61 61 72 0.00 Clique while-loop 13.62
web-NotreDame 325729 1090108 155 155 155 156 0.00 Clique SEQ-Inorder 0.80
Amazon0312 400727 2349869 11 11 11 11 0.00 Clique Degeneracy 86.73
Amazon0601 403394 2443408 11 11 11 11 0.00 Clique Degeneracy 68.32
Amazon0505 410236 2439437 11 11 11 11 0.00 Clique Degeneracy 44.64
web-BerkStan 685230 6649470 201 201 201 202 0.00 Clique SEQ-Inorder 27.32
web-Google 875713 4322051 44 44 44 45 0.00 Clique SEQ-Inorder 4.47
WikiTalk 2394385 4659565 26 31 51 132 39.22 CliqueNhood DSATUR 1221.04
cit-Patents 3774768 16518947 11 11 12 65 8.33 Clique DSATUR 761.86

DIMACS10-HeavyTail
as-22july06 22963 48436 17 17 17 26 0.00 Clique while-loop 0.14
cond-mat-2005 40421 175691 30 30 30 30 0.00 Clique Degeneracy 0.06
kron g500-simple-logn16 65536 2456071 136 136 155 433 12.26 Clique DSATUR 2842.85
rgg n 2 17 s0 131072 728753 15 15 15 15 0.00 Clique Degeneracy 0.17
caidaRouterLevel 192244 609066 17 17 17 33 0.00 Clique while-loop 1.44
coAuthorsCiteseer 227320 814134 87 87 87 87 0.00 Clique Degeneracy 0.30
citationCiteseer 268495 1156647 13 13 13 16 0.00 Clique while-loop 1.55
coAuthorsDBLP 299067 977676 115 115 115 115 0.00 Clique Degeneracy 0.36
cnr-2000 325557 2738969 84 84 84 84 0.00 Clique Degeneracy 9.89
coPapersCiteseer 434102 16036720 845 845 845 845 0.00 Clique Degeneracy 5.17
rgg n 2 19 s0 524288 3269766 18 18 18 18 0.00 Clique Degeneracy 1.43
coPapersDBLP 540486 15245729 337 337 337 337 0.00 Clique Degeneracy 3.79
eu-2005 862664 16138468 387 387 387 389 0.00 Clique SEQ-Inorder 68.64
rgg n 2 20 s0 1048576 6891620 17 17 17 18 0.00 Clique SEQ-Core 1.81
in-2004 1382908 13591473 489 489 489 489 0.00 Clique Degeneracy 22.51
rgg n 2 21 s0 2097152 14487995 19 19 19 19 0.00 Clique Degeneracy 3.70
rgg n 2 22 s0 4194304 30359198 20 20 20 20 0.00 Clique Degeneracy 7.38
rgg n 2 23 s0 8388608 63501393 21 21 21 21 0.00 Clique Degeneracy 14.99
rgg n 2 24 s0 16777216 1.33E+08 21 21 21 21 0.00 Clique Degeneracy 50.21
uk-2002 18520486 2.62E+08 944 944 944 944 0.00 Clique Degeneracy 330.59

DIMACS10-QuasiRegular
G n pin pout 100000 501198 4 4 8 8 50.00 Clique Degeneracy 22.17
preferentialAttachment 100000 499985 6 6 6 6 0.00 Clique Degeneracy 0.39
smallworld 100000 499998 6 6 8 8 25.00 Clique Degeneracy 35.81
luxembourg.osm 114599 119666 2 3 3 3 0.00 CliqueNhood Degeneracy 12.99
wave 156317 1059331 6 6 9 9 33.33 Clique Degeneracy 98.59
audikw1 943695 38354076 36 36 44 48 18.18 Clique DSATUR 4391.04
ldoor 952203 22785136 21 21 35 35 40.00 Clique Degeneracy 4474.09
ecology1 1000000 1998000 2 2 2 3 0.00 Clique SEQ-Inorder 2.65
belgium.osm 1441295 1549970 3 3 3 4 0.00 Clique while-loop 6.33
333SP 3712815 11108633 3 4 5 5 20.00 CliqueNhood Degeneracy 11734.50
cage15 5154859 47022346 6 6 13 26 53.85 Clique DSATUR 36141.60
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orings in large, low-density graphs. While we were able to solve the maximum
clique problems on all the instances tested, the vertex coloring problem consid-
ered on the same instances appears to pose a more formidable challenge. Any
advancements in exact algorithms for the maximum clique problem and the ver-
tex coloring problem on smaller graphs will directly impact the performance of
this methodology in a positive manner.
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