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Consider the task of dividing a state into k contiguous political districts whose populations must not differ

by more than one person, following current practice for congressional districting in the USA. A widely held

belief among districting experts is that this task requires at least k − 1 county splits. This statement has

appeared in expert testimony, special master reports, and Supreme Court oral arguments. In this paper,

we seek to dispel this belief. To illustrate, we find plans for several states that use zero county splits,

i.e., all counties are kept whole, despite satisfying contiguity and 1-person deviation. This is not a rare

phenomenon; states like Iowa and Montana admit hundreds, thousands, or tens of thousands of such plans.

In practice, mapmakers may need to satisfy additional criteria, like compactness, minority representation,

and partisan fairness, which may lead them to believe k − 1 splits to be minimum. Again, this need not

be true. To illustrate, we conduct short case studies for North Carolina (for partisan fairness) and Alabama

(for minority representation). Contrary to expert testimony and Supreme Court oral arguments from Allen

v. Milligan (2023), we find that fewer than k − 1 county splits suffices, even when subjected to these

additional criteria. This demonstrates our narrow point that k − 1 county splits should not be assumed

minimum and also suggests that districting criteria do not conflict as much as people sometimes believe.

The optimization methods proposed in this paper are flexible and can assist mapmakers in satisfying them.
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1. Introduction

The vast majority of US states require the preservation of political subdivisions (e.g., coun-

ties, cities, towns) in their political districts; this is true for both congressional and legislative

districts (NCSL 2021). Arguably, the most popular way to quantify splitting is the number of

splits (Carter et al. 2020, Cervas and Grofman 2020, Autry et al. 2021, Nagle 2022, DRA 2024, Shah-

mizad and Buchanan 2024), which is (nearly) equivalent to the number of parts or pieces (Gladkova

et al. 2019, Becker and Gold 2022), intersections (Wachspress and Adler 2021), or traversals (Carter

et al. 2020). For example, if a county is wholly assigned to one district, then it contributes zero

county splits. If it is divided across two districts, then it contributes one split. Generally, if a county
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is divided across k districts, then it contributes k− 1 county splits. Usually, the sum total number

of county splits is reported.

The academic literature on districting makes several claims about the number of county splits

s and how this quantity relates to the number of districts k. Often, the claim is that, in any

districting plan, the number of splits is at least the number of districts minus one, i.e., s≥ k− 1,

especially if districts must not differ in population by more than one person (Autry et al. 2021,

Nagle 2022), which is the norm for congressional districting (NCSL 2020, 2023). Sometimes, it is

further asserted that the minimum number of splits s∗ precisely achieves this quantity for (almost)

all instances, i.e., s∗ = k− 1, see Nagle (2022)1.

These claims have been repeated in court cases by a wide variety of districting experts, including

in the Supreme Court case Allen v. Milligan (2023). In it, Alabama’s congressional districts were

challenged under Section 2 of the Voting Rights Act (VRA) for diluting the voting strength of

Black voters. Below, we provide excerpts from expert testimony, cross examination, Supreme Court

oral arguments, and the Special Master’s report. These quotes show that many people involved in

the case (from all sides) believe that drawing seven districts requires six county splits.

• From expert testimony (Allen v. Milligan 2021b):

In order to make seven finely population-tuned districts, it is necessary to split at least six of

Alabama’s 67 counties into two pieces, or to split some counties into more than two pieces.

• From cross examination before a three-judge district court (Allen v. Milligan 2022a):

Q: At least six times, a county must be split to get the one person one vote minimal deviation

that we’re looking for, right?

A: I think a precise way to phrase it would be that there have to be at least six additional county

pieces as a way of phrasing.

Q: And that’s simple math that counties rarely line up where– you’re unlikely to have a county

that’s exactly 717,000 whatever people in it to form that one perfect district, so you are going

to probably have to split it at least a little to equalize it, right?

A: That’s the idea, yes.

• During Supreme Court oral arguments (Allen v. Milligan 2022b):

JUSTICE KAVANAUGH: . . . you look at respecting county lines, for example, right? That’s

an important one. And this did. This new district did just as well, if not better, in respecting

county lines. At least that’s the argument. So I want to hear your response to that. . .

1 Nagle’s work is unpublished but has nevertheless been impactful. For example, the Analyze tab on DRA (2024) states
that “Given k districts, you might need to split counties k− 1 times for district populations to be ‘roughly’ equal.”
A developer of DRA attributes this claim to Nagle and reiterated to us that k− 1 is minimum (Ramsay 2022). In
another example, Nagle’s work was favorably referenced by the special master Cervas (2022) in Harkenrider v. Hochul
(2022), who redrew New York’s congressional and state senate districts after they were found to be unconstitutional
Democratic partisan gerrymanders.
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MR. LACOUR:Well, three of the Duchin plans split more counties than necessary. The Cooper

plans keep them together but the same number of splits. Six is the minimum you have to have.

• From the Special Master’s report, whose remedial plans all have at least six county splits (Allen

v. Milligan 2023):

Second, to minimize county splits, the Special Master proposes placing Elmore

County. . . entirely in District 6. . . Finally, after avoiding county splits where possible, the Spe-

cial Master also sought to minimize the number of split precincts. . .

In this paper, our aim is to dispel these beliefs. We make three main points:

1. Often, fewer than k − 1 county splits suffice to satisfy the most basic districting criteria

(i.e., 1-person deviation and contiguity). For example, we show that several states (Idaho, Iowa,

Mississippi, Montana, Nebraska, West Virginia) can do so using zero county splits.

2. These examples are not rare flukes. For example, Montana admits 30,223 contiguous, whole-

county plans with 1-person deviation, and Iowa admits more than 1,000 such plans.

3. Even when constrained by other criteria (e.g., compactness, minority representation, parti-

san fairness), k − 1 need not be the minimum number of county splits. For example, we provide

a reasonably configured plan for Alabama with two majority-Black districts and 1-person devia-

tion that nevertheless exhibits fewer than k− 1 county splits. Similarly, we provide a reasonably

configured plan for North Carolina that scores well on partisan fairness metrics, despite satisfying

1-person-deviation and exhibiting fewer than k− 1 county splits.

We conclude that k−1 county splits should not be assumed minimum. Going forward, districting

experts should either remain agnostic to such statements, or rigorously prove or disprove them using

exact methods like ours. Our case studies also suggest that districting criteria do not conflict as

much as people sometimes believe. The optimization methods proposed in this paper are inherently

flexible and can assist mapmakers in satisfying them. To this end, our Python codes have been

publicly released under the GPL-3.0 license, allowing anyone to run, study, share, or modify them. A

more detailed accounting of our contributions is given in Section 2.4, but first we provide important

background and context for these contributions.

2. Background and Literature Review

Districting problems are usually cast in terms of graphs. To wit, letG= (V,E) be a graph whose ver-

tices V represent a state’s geographic units, which could be counties, census tracts, voting precincts,

census blocks, etc. The edges E indicate which pairs of geographic units are adjacent on the map.

We seek to partition the state into k districts (D1,D2, . . . ,Dk). Alternatively, we can think of a

districting plan as a function d : V → [k] that maps each vertex to a district number from the set

[k] := {1,2, . . . , k}. We use both representations interchangeably.
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Usually, each district is required to be contiguous on the map; in graph terms, this means that

each district D ⊆ V should induce a subgraph G[D] = (D,E ∩
(
D
2

)
) that is connected, where

(
D
2

)
denotes the collection of two-element subsets of D. Each geographic unit i ∈ V has an associated

population pi. When S ⊆ V is a subset of vertices, we use p(S) as a shorthand for its population∑
i∈S pi. Each district population should be near to the ideal population p(V )/k, say, at least L and

at most U . In 1-person-deviation, these population bounds are L= ⌊p(V )/k⌋ and U = ⌈p(V )/k⌉,
where ⌊·⌋ and ⌈·⌉ are the floor and ceiling functions, respectively. Setting L and U to these values

ensures that the overall population deviation or total population deviation, which is the largest

district population minus the smallest district population, i.e.,

max{p(Dj) | j ∈ [k]}−min{p(Dj) | j ∈ [k]},

will be at most one. This is the usual way to quantify deviation in court cases (Hebert et al. 2010).

2.1. Norms Around Population Balance

Up until the 1960s, political districts in the USA sometimes had highly disparate populations. For

example, after the 1960 census, Georgia’s congressional districts varied in population from 272,154

at the low end to 823,680 at the high end. As a result, voters in the least-populous district had three

times the voting strength as those in the most-populous district. In Wesberry v. Sanders (1964),

the US Supreme Court overturned these congressional districts for violating Article 1, Section 2 of

the US Constitution. This decision was part of a broader “one-person, one-vote” revolution that

included other landmark cases such as Baker v. Carr (1962) and Reynolds v. Sims (1964), which

concerned state legislative districts in Tennessee and Alabama, respectively, and whose decisions

were instead based on the Equal Protection Clause of the 14th Amendment.

In the years since, different norms have evolved for congressional districts and state legislative

districts, due to their different legal footings (i.e., Article 1, Section 2 versus Equal Protection),

with the standards for congressional districts being considerably stricter. Nowadays, most states

enact congressional plans with 1-person deviation. For example, after the 2010 and 2020 censuses,

29/43 ≈ 67% and 24/44 ≈ 54% of states did so, respectively (NCSL 2020, 2023), if we exclude

states with just one congressional district. Some may see this insistence on 1-person deviation

as silly given that: (1) census undercounts and overcounts are orders of magnitude larger (Wang

2022a,b), and that (2) district populations change considerably between censuses, a phenomenon

that can lead to within-cycle malapportionment (DeFord et al. 2023). Indeed, the data is already

more than two years old when the new districts are first used for elections, and these districts are

typically used for ten years thereafter. However, there is a reason states often follow this practice.

Any deviation from precise mathematical equality risks a lawsuit and must be justified. As the

Supreme Court held in Karcher v. Daggett (1983):
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“Parties challenging apportionment legislation bear the burden of proving that population dif-

ferences among districts could have been reduced or eliminated by a good faith effort to draw

districts of equal population. If the plaintiffs carry their burden, the State must then bear the

burden of proving that each significant variance between districts was necessary to achieve

some legitimate goal.”

In the years following Karcher, congressional plans with tiny deviations have been rejected by

federal courts, including a Pennsylvania plan with a 19-person deviation (i.e., 0.0029%) (Hebert

et al. 2010). However, larger deviations approaching 1% have sometimes been permitted with

sufficient justification. For example, West Virginia’s congressional districts were upheld in Tennant

v. Jefferson County (2012) despite a 4781-person deviation, justified by the state’s desire to keep

counties whole. However, most states opt for 1-person deviation to be safe.

Despite the emphasis on 1-person deviation in practice, nearly all computational districting work

imposes larger deviations, even when drawing congressional districts. For example, in the recent

optimization literature, Swamy et al. (2023) use either a ±2%, ±1%, or ±0.25% deviation, Dobbs

et al. (2023a) use a ±1% deviation, Validi et al. (2022), Validi and Buchanan (2022), Zhang et al.

(2024) and Dobbs et al. (2023b) use a ±0.5% deviation, and Shahmizad and Buchanan (2024)

primarily use a ±0.5% deviation. Ensemble methods, which aim to understand the underlying

distribution of plans, also use larger deviations: DeFord and Duchin (2019) primarily use a ±2%

deviation (but sometimes tighten or relax this to ±0.5% or ±5%); Becker et al. (2021) use a ±1%

deviation; DeFord et al. (2021) appear to use ±5% deviation (see Fig. 9); Autry et al. (2021) use a

±2% deviation; McCartan et al. (2022) and Kenny et al. (2023) primarily use a ±0.5% deviation;

McCartan and Imai (2023) use a ±0.1% deviation and remark that using a tighter deviation

would require them to use more granular geographic units like census blocks rather than precincts.

Usually, these larger deviations are justified by statements like that of DeFord et al. (2021):

“Even for Congressional districts, which are often balanced to near-perfect equality in enacted

plans, a precinct-based ensemble with ≤ 1% deviation can still provide a good comparator,

because those plans typically can be quickly tuned by a mapmaker at the block level without

breaking their other measurable features.”

Notable exceptions include the computational works of Cohen-Addad et al. (2018) and Swamy

et al. (2024) that do achieve 1-person deviation, but with block-level tuning. Census blocks often

correspond to city blocks in urban areas and are considerably more granular than the other geo-

graphic units (e.g., counties, tracts, precincts) usually used in computational districting works. For

example, Alabama has 67 counties, 1437 tracts, 1837 precincts, and 185,976 blocks. As suggested by

the DeFord et al. quote above, mapmakers may first draw rough plans using larger geographic units

and subsequently break them into census blocks for final tuning (e.g., to achieve 1-person deviation);
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indeed, this practice is becoming increasingly common in litigation settings where optimization

may be used to draw rough plans (Krenz et al. 2021, Miller 2022, NCLC v. Hall 2021). As one

might expect, this final step may cause additional splits to political subdivisions. So, the emphasis

on 1-person deviation and county preservation is a distinguishing feature of the present work.

2.2. County Splitting

Each state is subdivided into a set of counties C or county equivalents. Similarly, each county c∈C

is subdivided into precincts, tracts, or blocks, the set of which will be denoted by Vc, with Vc = {c}

if G is itself a county-level graph.

Let d : V → [k] be a districting plan. If S ⊆ V is a subset of vertices, then the set of districts that

S is assigned to is denoted by d[S] := {d(i) : i ∈ S}; this is simply the image of set S under d. In

particular, county c’s vertices Vc are assigned to the districts d[Vc].

Definition 1 (county splits). The county c is whole, intact, or preserved in plan d if d[Vc] is

a singleton (i.e., |d[Vc]|= 1), in which case it contributes zero splits; otherwise, it is split, with the

number of splits being |d[Vc]| − 1. The (total) number of county splits is
∑

c∈C(|d[Vc]| − 1).

The number of county splits should not be confused with the number of split counties (Wachspress

and Adler 2021) or number of counties split (Becker and Gold 2022), which are the size of the

set Csplit = {c ∈ C : |d[Vc]| > 1}. Other splitting scores include the number of parts (Gladkova

et al. 2019) or intersections (Wachspress and Adler 2021), which are
∑

c∈C |d[Vc]|, i.e., the number

of county splits plus the constant |C|. Thus, the differences between county splits, parts, and

intersections are only cosmetic, and they are all equivalent from an optimization perspective. (Note,

however, that minimizing the number of split counties is different.) More complicated splitting

scores exist, including various entropy-based scores (Becker and Gold 2022, Guth et al. 2022) and

the number of pieces (Gladkova et al. 2019) or fragments (Becker and Gold 2022), which count

the number of connected components of the intersections Vc ∩Dj between each county c and each

district Dj; McCartan and Imai (2023) use this same score minus the number of counties and call

it splits. For more, we refer the reader to Becker and Gold (2022).

As shown by Carter et al. (2020) there is a close relationship between county splits and county

clusterings. Intuitively speaking, a county clustering is a way to decompose a state into miniature

districting instances. This notion is formalized as follows.

Definition 2 (county clustering). A county clustering (C1,C2, . . . ,Cq) is a partition of the

counties along with associated cluster sizes (k1, k2, . . . , kq) such that

1. the cluster sizes are positive integers that sum to k,

2. each cluster Cj induces a connected subgraph, and
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3. each cluster Cj has a population satisfying Lkj ≤ p(Cj)≤Ukj.

A county clustering is maximum if its cardinality q is largest among all county clusterings. We

denote this maximum cardinality by c∗.

We mention two extreme cases. The trivial county clustering has one county cluster containing

all counties and this cluster’s size is k. At the other extreme, we have k clusters (C1,C2, . . . ,Ck)

with cluster sizes (1,1, . . . ,1); in this case, the county clustering is in fact a whole-county districting

plan and we have c∗ = k.

2.3. Claims about County Splits

Here we review some common claims about the minimum number of county splits s∗ and how this

quantity relates to the number of districts k and to the maximum number of county clusters c∗.

Specifically, we consider the claims that:

• k− 1 is an upper bound (i.e., s∗ ≤ k− 1);

• k− 1 is not an upper bound (i.e., s∗ ̸≤ k− 1);

• k− 1 is a lower bound (i.e., s∗ ≥ k− 1);

• k− c∗ is minimum (i.e., s∗ = k− c∗);

• k− c∗ is a lower bound (i.e., s∗ ≥ k− c∗), and often minimum in practice.

The claim that k− 1 is an upper bound. Districting folklore states that, when dividing

a state into k contiguous and population-balanced districts, k− 1 county splits suffice. For some

intuition, consider four counties arranged in a line, each with a population of 75, as in Figure 1.

Suppose we seek k = 3 equipopulous districts. We may create our first district with the leftmost

county (population 75) and add to it 25 people from the second county, introducing one split.

Then, create our second district with the remaining 50 people from the second county and add to

it 50 people from the third county, introducing a second split. Then, create the third district from

the remaining 25 people and the entire rightmost county. Thus, we have created three districts

using two county splits, as folklore would suggest. Of course, this idea applies to more complicated

instances; the important assumption is that we should be able to carve k−1 districts from the state,

one-by-one, each time introducing one county split, and take what remains as the final district.

The claim that k− 1 is not an upper bound. As noted by Carter et al. (2020), it is not

always possible to draw a plan with k − 1 county splits. Here, we give a modified example from

Shahmizad and Buchanan (2024). Consider a hub county with 35 people that is adjacent to three

spoke counties, each with a population of 55, as in Figure 2. Suppose we are to divide this state

into two districts, each with a population of 100. We must split at least one of the spoke counties

(otherwise, all spoke counties will be kept whole and some district will contain at least two of
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75 75 75 75

75 75 7525 50 50 25

district 1 district 2 district 3

Figure 1 An illustration of the k− 1 county splits idea. Here, we have a districting instance with four 75-person

counties from which we can generate a plan with three 100-person districts using two county splits.

them, causing its population to reach 110, which is too much). Now, each district can take at most

55 people from this split spoke county, which is too little, meaning that each district must extend

into the hub county, splitting it as well. Thus, we need at least two county splits, which is more

than k−1. Shahmizad and Buchanan extend this example to show that any number of splits k+ q

might be needed, for any nonnegative integer q. So, there is generally no way to upper bound the

minimum number of splits s∗ by a function of the number of districts k.

Proposition 1 (Shahmizad and Buchanan (2024)). For all integers q ≥ 0 and h ≥ 0, there

is a districting instance with k= 2 districts and a ±h-person deviation such that s∗ ≥ k+ q.

35

55
55

55

15 20

30 25

55
55

district 1 district 2

Figure 2 A districting instance that requires more than k− 1 county splits. Here, we have two districts, and at

least two county splits are required.

The claim that k − 1 is a lower bound. The literature often claims k − 1 to be a lower

bound. Nagle (2022) states that forcing districts to satisfy a 1-person deviation makes it “highly

probable that the minimum number of county splits is uniquely given as the number of districts

minus one.” Likewise, Autry et al. (2021) consider this a “reasonable” assumption. This belief

has been repeated in high-profile court cases, including in Allen v. Milligan (2023) before the US

Supreme Court and in Harper v. Hall (2022) before North Carolina’s Supreme Court (as we will

see in Section 3.2). In this paper, we give many examples showing that k−1 is not a lower bound.
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The claim that k − c∗ is minimum. Carter et al. (2020) propose a more nuanced claim.

They recognize that the number of county splits is sometimes less than the folklore number k− 1.

To illustrate, consider dividing Alabama’s total population of 5,024,279 across seven districts,

so each has an ideal population of 5,024,279/7≈717,754.14. Thus, to achieve a 1-person devia-

tion, there must be six districts with a population of L=717,754 and one district with population

U=717,755. It turns out that Alabama’s counties can be partitioned into two county clusters, one

with a population of L+U and another with a population of 5L, see Figure 3. We can consider

them as two separate, miniature districting instances, the first with two districts and the second

with five districts. In Section 3.1, we will divide up the first using one county split and the second

using four county splits, for a total of five county splits. So, by first dividing the state’s counties

into two county clusters, we save one county split (beyond the folklore k− 1 number).

Figure 3 County clusterings for Alabama and North Carolina with two and three clusters, respectively

In another example, consider dividing North Carolina’s total population of 10,439,388 across

fourteen districts, so each has an ideal population of roughly 745,670.57. Thus, to achieve a 1-person

deviation, there must be six districts with a population of L =745,670 and eight districts with

population U =745,671. It turns out that North Carolina’s counties can be partitioned into three

county clusters, the first with a population of 3U , the second with population 3L+U , and the third

with population 3L+4U . We can consider them as three separate districting instances, with three,

four, and seven districts, respectively. In Section 3.2, we will divide them up using two, three, and

six county splits, respectively, giving eleven total splits, two less than the folklore k− 1 number.

More generally, the idea behind Carter et al.’s claim is that, by first partitioning a state’s

counties into a maximum number c∗ of county clusters, we can save c∗ − 1 county splits, thus

giving (k− 1)− (c∗− 1) = k− c∗ county splits. Indeed, in their “basic” theorem, they propose the

bold claim that the minimum number of county splits s∗ equals k− c∗. In a subsequent “enlarged”
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theorem, they add the caveat that this equality holds “except in rare circumstances.” Their theorem

statement does not specify what these rare circumstances are, nor do they establish how rare they

are in practice. However, a footnote of their proof in the appendix refers to “bad combines,” which

are cases when their algorithmic proof fails.

The claim that k− c∗ is a lower bound and usually minimum in practice. Shahmizad

and Buchanan (2024) point out that half of Carter et al.’s theorem always holds, that is s∗ ≥ k−c∗,

a result that they name weak split duality. Using integer programming techniques, Shahmizad and

Buchanan compute a maximum number of county clusters for each congressional and legislative

districting instance across the USA, thus establishing their c∗ values. Then, using the inequality

s∗ ≥ k− c∗, they establish a lower bound on s∗. With other integer programming techniques, they

find districting plans that achieve this lower bound, thus proving optimality in terms of minimum

county splits. So, we may empirically conclude that Carter et al. are right; their s∗ = k − c∗

“theorem” does hold in practice. (Note that the hub-and-spoke instance from earlier with k = 2

districts provides a synthetic counterexample, as it has a maximum of one county cluster c∗ = 1

but requires at least s∗ ≥ 2 splits, thus giving an example where s∗ >k− c∗.)

Shahmizad and Buchanan primarily used a ±0.5% deviation for congressional instances and

a ±5% deviation for legislative instances. However, recognizing that 1-person deviation is the

norm for congressional districting, they also performed a limited set of experiments for 1-person

deviation, establishing that 79% of these districting instances admit a nontrivial county clustering

(i.e., with c∗ ≥ 2). (Note that Shahmizad and Buchanan did not compute c∗ to proven optimality

under 1-person deviation; they stopped after establishing that c∗ ≥ 2.) So, contrary to speculations

by Autry et al. (2021) and Nagle (2022), it is the norm rather than a rare exception for a state to

admit a nontrivial county clustering. If these county clusterings can be extended into districting

plans (as folklore would suggest), then this would yield plans with 1-person deviation and fewer

than k− 1 county splits.

2.4. Our Contributions

In this paper, we go further. We give plans with zero county splits for states like Idaho, Iowa,

Mississippi, Montana, Nebraska, and West Virginia. Further, we show that these counterexamples

are plentiful; states like Iowa and Montana admit hundreds, thousands, or tens of thousands of

contiguous, whole-county plans with 1-person deviation. Moreover, we show that, even when

plans must satisfy other criteria like compactness, minority representation, and partisan fairness,

it can still be possible for states to draw plans with fewer than k − 1 county splits, contrary to

statements made by a variety of districting experts. These contributions to districting practice are

enabled by our advances in mixed-integer programming (MIP) methodology, as previewed below.
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Our first methodological contribution is an approach for enumerating the top t most compact

county clusters. Figuring out how to do this well took real effort, as standard approaches are inap-

plicable or duplicate considerable effort. For example, the approach taken by the MIP solver Gurobi

to find the t best solutions (via its PoolSearchMode parameter) is ill-equipped to handle extended

formulations, a shortcoming that has been acknowledged by Gurobi’s Tobias Achterberg (Buchanan

2021). Meanwhile, extended formulations are nearly ubiquitous in districting models, including all

that use the popular flow-based contiguity constraints of Shirabe (2005, 2009). We have found the

top-t enumeration idea to be crucial when seeking to satisfy other criteria, e.g., when generating

the Alabama plan in Section 3.1.

Our second methodological contribution is an extension to find whole-county districting plans

with 1-person deviation. With it, we find more than 1,000 such plans for Iowa. It may not be

apparent to those who have not worked on this instance, but it is a huge computational challenge.

Optimization and districting enthusiasts had tried for several years, using many different tech-

niques, to find a single Iowa plan with 1-person deviation. The fact that we can find more than 1,000

plans is a considerable computational feat. For some context, a plan with 5-person deviation, sub-

mitted by Harvard’s Cory McCartan, won Dave Wasserman’s districting challenge (Burger 2021).

In this challenge, the task was to find a contiguous, whole-county plan for Iowa with minimum

deviation. With our new methodology, we can find what would have been more than 1,000 winning

(and optimal) entries. Our approach is a district-carving procedure, inspired by that of McCartan

and Imai (2023), except that it is optimization-driven and uses top-t enumeration. The task of

finding a 1-person deviation plan for Iowa also eluded Shahmizad and Buchanan (2024) whose

method ran for 24 hours without success.

3. Enumerating Top County Clusters with Integer Programming

Here we propose integer programming techniques to identify county clusters rooted at a given

county. To obtain reasonably configured districts, we seek clusters that are compact in shape. Com-

pactness can be measured by the number of cut edges emanating from the cluster (Duchin 2022),

the cluster’s boundary length, its Polsby-Popper score (Polsby and Popper 1991), or in many other

ways (Young 1988, Niemi et al. 1990, Kaufman et al. 2021, Murray 2024). For simplicity, we present

only the cut edges model here. Extending the model to capture the boundary length or Polsby-

Popper score is straightforward using ideas from Validi and Buchanan (2022) and Belotti et al.

(2024) and is also implemented in our code, see also Buchanan (2023a). The most compact cluster

(however that is measured) may be undesirable for any number of reasons. So, for sake of flexibility,

our approach enumerates the top t most compact clusters, and the user can choose from them.
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To formalize the approach, let G= (V,E) be the county-level graph, r ∈ V be a designated root

county, and k′ be the desired cluster size. (Different sizes k′ will lead to different clusters, and the

user can set k′ to whichever value from {1,2, . . . , k− 1} best suits their needs.) For now, we seek

a single connected cluster S ⊆ V that contains r with population between Lk′ and Uk′ for which

the size of the cut δ(S) = {{i, j} ∈E | |{i, j}∩S|= 1} is minimum. The intent is that this cluster S

will later be subdivided into k′ districts, and its complement V \S will be subdivided into k− k′

districts. To promote this, we require V \ S to be connected and to have a population between

L(k− k′) and U(k− k′). Requiring V \S to be connected is not strictly required but is convenient

for our purposes.

We introduce a binary assignment variable xij for each vertex i ∈ V and each cluster number

j ∈ {1,2}, where j = 1 represents S, and j = 2 represents V \ S. This variable xij equals one if

vertex i∈ V is assigned to cluster number j (and equals zero otherwise). We also introduce a binary

variable ye for each edge e= {u, v} ∈E that equals one when it is cut, i.e., when precisely one of

u and v is selected in the cluster. The basic model, without contiguity constraints, is:

min
∑
e∈E

ye (1a)

s.t. xi1 +xi2 = 1 ∀i∈ V (1b)

Lk′ ≤
∑
i∈V

pixi1 ≤Uk′ (1c)

L(k− k′)≤
∑
i∈V

pixi2 ≤U(k− k′) (1d)

xu1−xv1 ≤ ye and xv1−xu1 ≤ ye ∀e= {u, v} ∈E (1e)

xr1 = 1 (1f)

x, y binary. (1g)

The objective (1a) minimizes the number of cut edges. The assignment constraints (1b) ensure that

each vertex is either assigned to S or its complement. Constraints (1c) and (1d) ensure population

balance. Constraints (1e) ensure that if an edge is not cut, then its endpoints are either both

assigned to S or neither is. Constraint (1f) forces the root r to be in S. Although this model could

be simplified by replacing each instance of xi2 with 1− xi1, we prefer the presentation above for

clarity and because MIP solvers will perform these substitutions in presolve anyway.

Now, consider the contiguity constraints. In our experience, the flow-based contiguity constraints

of Shirabe (2005, 2009) work well for county-level instances, especially when the root is known a

priori. In our case, we know that r will root S. So, we introduce a variable fuv for each directed
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edge (u, v) indicating how much flow is sent along this edge. We impose the following constraints,

where N(v) is the neighborhood of vertex v.∑
v∈N(u)

(fvu− fuv) = xi1 ∀u∈ V \ {r} (2a)∑
v∈N(u)

fvu ≤Mxu1 ∀u∈ V \ {r} (2b)

fur = 0 ∀u∈N(r) (2c)

fuv, fvu ≥ 0 ∀{u, v} ∈E. (2d)

The idea behind Shirabe’s formulation is that the district is connected if and only if we can

send flow from the root to the other district vertices with the flow never leaving the district.

Constraints (2a) ensure that each vertex selected in S \ {r} consumes one unit of flow. The “big-

M” constraints (2b) ensure that flow can only enter selected vertices, and we set M = |V | − 1.

Constraints (2c) disallow flow from entering the root.

For the complement, we do not know a root a priori, and in this case separator inequalities (Car-

vajal et al. 2013, Wang et al. 2017, Oehrlein and Haunert 2017, Validi et al. 2022) work better as

they are lightweight and do not introduce model symmetry. In our case, they take the form

xa2 +xb2 ≤ 1+
∑
v∈R

xv2, (3)

where a, b ∈ V are nonadjacent vertices that become disconnected when removing R ⊆ V \ {a, b}

from the graph. The idea behind this constraint is that if none of the vertices from the separator

are chosen, then the right-hand-side of the inequality becomes one, which disallows the MIP from

selecting both a and b. Because there are exponentially many of these inequalities, we implement

them in a cut callback and use the algorithm of Fischetti et al. (2017) to find minimal violated

inequalities.

The full model for finding a most compact cluster is then given by (1), (2), and (3). However,

we seek not just one cluster, but the top t clusters. If using the Gurobi solver, one straightforward

approach would be to change the PoolSearchMode parameter to enumerate the t best solutions.

However, any given cluster can be paired with many different values of the f variables, possibly

producing the same cluster over and over. Another approach would be to solve the model from

scratch t times, each time adding a no-good cut for the previous values of the x variables. In

principle, this would work, but duplicates effort. Instead, we record each solution ourselves in

a callback and instruct the solver to keep searching by adding a no-good cut in the x space of

variables. We terminate the search early (with the nonsensical cut xr1 ≤−1) when the best linear

programming (LP) relaxation bound cannot beat any of the t current best solutions.
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3.1. Case Study for Alabama

In the Supreme Court case Allen v. Milligan (2023), Alabama’s congressional districts were chal-

lenged under Section 2 of the Voting Rights Act (VRA), which prohibits diluting the voting strength

of protected minority groups. In particular, the enacted districts were criticized for dividing the

state’s Black Belt across multiple districts. An effect was that only one of the seven districts (14%)

could elect Black voters’ candidates of choice, even though more than 27% of the state is Black.

To bring a Section 2 lawsuit, the Milligan plaintiffs needed to satisfy the Gingles preconditions,

which were established by the Supreme Court in Thornburg v. Gingles (1986). The first precondition

to be shown is that the minority group is sufficiently numerous and geographically compact to

constitute a majority in a single-member district, see also Bartlett v. Strickland (2009). That is, the

plaintiffs must show that the minority group could achieve better representation in an alternative,

reasonably configured map—in this case with two majority-Black districts, not one.

Evan Milligan himself was unable to draw such a map (Allen v. Milligan 2021a), and mathe-

matics professor Moon Duchin was hired to draw demonstration districts (Allen v. Milligan 2021b,

Buchanan 2023b). She used computer optimization techniques to draw preliminary maps, and then

later drew four plans by hand. The fourth plan (“Plan D”) had six county splits, which she testified

to be minimum possible. Later, Alabama’s attorney Edmund LaCour repeated the same claim to

Justice Kavanaugh during Supreme Court oral arguments when complaining that Duchin’s other

plans were not reasonably configured, in part because they had more splits than the supposed min-

imum of six. The Supreme Court ruled in Milligan’s favor, and a special master was later tasked

with drawing remedial plans. The special master’s plans “avoid[ed] county splits where possible,”

and all had at least six county splits.

Using our proposed integer programming techniques, we found the ten most compact county

clusters of size two that are rooted at Jefferson County (whose seat Birmingham is nearly 70%

Black). It took 260 seconds to find t= 10 clusters and 4223 seconds to find and prove optimality of

the top 10 clusters. The reason for choosing k′ = 2 is that the MIP is infeasible for k′ = 1 and the

next largest value k′ = 2 suited our needs (i.e., there exist clusters of size two, ultimately leading to

plans with five county splits rather than six). Among the top ten clusters is the one from Figure 3.

Meanwhile, its complement contains majority-Black cities such as Mobile, Montgomery, and Selma,

as well as many counties from the Black Belt. By hand, we divided the cluster into two districts

(with one being majority-Black) using one county split in Jefferson County. We then divided the

cluster’s complement into five districts (with one being majority-Black) using four county splits.

We arrive at the plan2 in Figure 4, which has two majority-Black districts, 51.33% and 50.58%

by voting age population (VAP). Importantly for Gingles, the districts are also reasonably

2 https://davesredistricting.org/join/7016a5b6-3bfe-46ec-b5e8-6010c26de508

https://davesredistricting.org/join/7016a5b6-3bfe-46ec-b5e8-6010c26de508
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configured; they are contiguous, satisfy a 1-person deviation, and have an average Polsby-Popper

compactness score of 0.2249, which is comparable to that of Alabama’s originally enacted plan

(0.2221)3 and the Special Master’s remedial plans (which were reported as 0.23, 0.24, 0.24).

Also, contrary to impossibility claims made in expert testimony, cross examination, and Supreme

Court oral arguments, the plan has just five county splits (and five precinct splits). We conclude

that k − 1 county splits should not be assumed minimum, even when constrained by contiguity,

compactness, 1-person deviation, and minority representation.

Figure 4 Reasonably configured plans with fewer than k − 1 county splits for Alabama (7 districts, 5 county

splits) and North Carolina (14 districts, 11 county splits).

3.2. Case Study for North Carolina

In the case Harper v. Hall (2022), the North Carolina Supreme Court overturned the state’s enacted

congressional districts for being an unconstitutional partisan gerrymander, with 10/14≈71.43% of

the districts favoring Republicans despite the state’s nearly even partisan makeup (49% vs. 48%). A

remedial plan was drawn in which six districts favored Democrats, seven districts favored Republi-

cans, and one was a tossup. The remedial plan had thirteen county splits (one less than the enacted

plan). In 2023, after Republicans gained a majority on the North Carolina Supreme Court, the

ruling was overturned, and the state’s General Assembly enacted another Republican gerrymander

that, at the time of writing, is the subject of several lawsuits.

The belief that k− 1 is the minimum number of county splits also entered Harper v. Hall. The

2021 districting criteria adopted by North Carolina’s House Committee on Redistricting and the

Senate Committee on Redistricting and Elections state that “Division of counties in the 2021

Congressional plan shall only be made for reasons of equalizing population and consideration of

3 DRA, which presumably uses a different map projection, reports the average scores as 0.2211 and 0.2203.
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double bunking” and that “VTDs [i.e., precincts] should be split only when necessary” (Joint

Meeting of Committees 2021). Nevertheless, the enacted plan had 14 county splits and 25 precinct

splits. These shortcomings were pointed out by expert witness and political science professor Jowei

Chen (Harper v. Hall 2021), who wrote that “a congressional plan in North Carolina needs to

contain only 13 county splits if the map-drawer is attempting to minimize the splitting of counties”

and that “only 13 VTD splits” are necessary. He thus faulted the enacted plan for having “one

more [county] split than is necessary” and “far more VTD splits than is necessary,” violating the

“mandated criteria” of “minimizing county splits [and] minimizing VTD splits.” The belief that 13

splits is minimum continues to be repeated, e.g., by a conservative/libertarian foundation in North

Carolina that criticized the way in which counties were split in the enacted plan (Jackson 2023).

Using our proposed integer programming techniques, we found the ten most compact county

clusters of size three and four rooted at the two most populous counties: Mecklenburg County

(which contains Charlotte) and Wake County (which contains Raleigh and Cary). The Mecklenburg

computation took 8954 seconds and the Wake computation took 6579 seconds. The reason for

choosing k′ = 3 for the Mecklenburg cluster is that the MIP is infeasible for k′ ∈ {1,2}. The reason

for choosing k′ = 4 for the Wake cluster is that the MIP is infeasible for k′ = 1, the available clusters

for k′ = 2 have unappealing shapes (Polsby-Popper scores less than 0.14), and the compact clusters

for k′ = 3 tended to disrupt the Black Belt counties in the northeast portion of the state. Among

the top clusters, we pick one for Mecklenburg (C1) and one for Wake (C2) that are compatible,

meaning that (C1,C2,C3) is a county clustering, where C3 :=C \ (C1 ∪C2), with the cluster sizes

being (k1, k2, k3) = (3,4,7). This is the county clustering from Figure 3. By hand, we divided the

clusters into three, four, and seven districts using two, three, and six county splits, respectively,

giving a total of 11 county splits (and 11 precinct splits).

We arrive at the plan4 in Figure 4. Among the 14 districts, five favor Democrats, six favor

Republicans, and three are tossups. The plan fares well on various partisan fairness metrics, as

reported by DRA (2024), even though it was not optimized for them. For example, the plan has

a mean-median score of −0.98%, which is substantially better (i.e., closer to zero) than the two

gerrymanders (5.76% and 6.25%) and only slightly worse than the remedial plan (0.68%). Similar

performance is observed for partisan bias (1.45%) compared to the gerrymanders (16.75% and

19.82%) and the remedial plan (0.25%). The districts are also reasonably configured; they are

contiguous, satisfy a 1-person deviation, and have an average Polsby-Popper compactness score

of 0.3371, which is better than the two gerrymanders (0.3026 and 0.2439) and the remedial plan

(0.3283)5. Also, contrary to impossibility claims made in expert testimony, this plan has just 11

4 https://davesredistricting.org/join/061f823b-717f-4b61-aade-8d625d1b3001

5 Again, the scores are reported slightly differently by DRA, being 0.3329, 0.2974, 0.2432, and 0.3234, respectively.

https://davesredistricting.org/join/061f823b-717f-4b61-aade-8d625d1b3001
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county splits (and 11 precinct splits). We conclude that k− 1 county splits should not be assumed

minimum, even when constrained by contiguity, compactness, 1-person deviation, and partisan

fairness (or competitiveness).

4. Generating Whole-County Plans with Integer Programming

This section extends the approach to find contiguous, whole-county plans with 1-person deviation.

We note that the direct application of an integer programming model is ill-suited for this task.

Commercial MIP solvers will run for days on end without finding a feasible solution for instances

like Iowa that have k= 4 districts when subjected to 1-person deviation (Shahmizad and Buchanan

2024). This poor performance persists regardless of which integer programming model is used:

Hess (Hess et al. 1965) or labeling (Validi and Buchanan 2022); the manner in which contiguity is

imposed: single-commodity flow (Hojny et al. 2021), multi-commodity flow (Shirabe 2009, Validi

et al. 2022), separator constraints (Oehrlein and Haunert 2017, Validi et al. 2022); or the symmetry

handling technique: diagonal-fixing (Validi and Buchanan 2022) or the extended formulation for

partitioning orbitopes (Faenza and Kaibel 2009). We require a different approach.

At a high-level, the idea is to repeatedly carve a district from the state, analogous to the algorithm

of McCartan and Imai (2023). One key difference is that McCartan and Imai aim to understand

the distribution of possible plans, while we are interested in the tails, leading to differences in the

carving strategy (randomized vs. optimization-minded).

Figure 5 proposes a MIP-based districting heuristic. In it, P is a collection of partial plans (in

which not all counties have been assigned to a district), and C is a collection of completed plans.

1. initialize C ← {} and P ←{{}}
2. while P ≠ {} do

• select and remove a partial plan P from P
• let V ′ = V \ (∪D∈PD) be the vertices unassigned in partial plan P
• note that k− |P | is the number of unfinished districts in partial plan P
• if k− |P |= 1, then add the completed plan P ∪{V ′} to C and continue
• pick a root county r ∈ V ′ (e.g., with largest population)
• using MIP techniques from Section 3 (setting the cluster size to k′ = 1),

find a collection D of (up to) t districts in G[V ′] that each contain r
• for each district D ∈D, add new partial plan P ∪{D} to P

3. return C
Figure 5 A MIP-based districting heuristic

The heuristic initializes the collection of partial plans with a single empty plan (with all vertices

being unassigned). Each iteration of the while loop extends a partial plan by one district. In it, a

root vertex r is selected, and its top t most compact districts are found. For each of these districts,
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a new partial plan is obtained. If only t′ < t such districts exist (possibly t′ = 0), then the heuristic

only creates t′ new partial plans from the given partial plan. Thus, the branching factor is at most

t. In our implementation, the default value is t= 10, generating up to 104−1 = 1000 plans for Iowa.

Generally, the heuristic can find up tk−1 plans, and the user can cast a wider net with larger t.

In principle, all plans could be found using a procedure like this, setting t to infinity. However, a

better approach for enumerating all contiguous, whole-county plans (regardless of their population

deviation or compactness properties) is the enumpart algorithm of Fifield et al. (2020), Kawahara

et al. (2017), which is designed for this purpose. In particular, enumpart finds that Montana admits

precisely 30,223 contiguous, whole-county plans with 1-person deviation6. We thank Chris Kenny

for carrying out this 3-day computation at our request (Kenny 2024). It should be noted, however,

that the number of plans for Iowa is too huge to be enumerated in full; Fifield et al. (2020) resort

to sampling 500 million plans, which they state is still “miniscule relative to the total number of

valid partitions. . . into four districts, of which there are approximately 1024.”

4.1. Applying the MIP-Based Heuristic

This section applies the MIP-based districting heuristic to several US states, specifically Idaho,

Iowa, Mississippi, Montana, Nebraska, and West Virginia. In each case, our approach finds multiple

contiguous, whole-county congressional plans with 1-person deviation (or less), as shown in Table 1.

Table 1 Experimental results for the MIP-based heuristic. We report the number of counties (|C|), the number

of districts (k), the number of 1-person (or 0-person) plans returned by the approach when using the default value

t= 10 (which is why, for example, only 10 plans are returned for MT and WV), and the running time in seconds.

state |C| k # plans time(s)
ID 44 2 4 7.85
IA 99 4 112 13667.27
MS 82 4 49 2286.60
MT 56 2 10 10.54
NE 93 3 20 347.58
WV 55 2 10 139.16

We begin with Idaho, Montana, and West Virginia, which have two districts. Each admits

contiguous, whole-county plans with 1-person deviation, see Figure 6. In fact, Idaho and West

Virginia admit plans with 0-person deviation. West Virginia is particularly interesting, as it draws

whole-county plans in practice. Its 2010 districts were upheld by the Supreme Court in Tennant

v. Jefferson County (2012) in a per curiam opinion, despite exhibiting a 4871-person deviation,

justified by the state’s desires to keep counties whole and to preserve the cores of prior districts.

6 McKinnie and Szalda-Petree (2024) do a deeper dive into Montana’s possible plans with one prescribed county split.
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Meanwhile, the current map has a 1582-person deviation. It is unclear to us whether it would sur-

vive a similar challenge, given that the deviation is still nontrivial and the cores of prior districts

had to be disrupted after the state lost a seat in reapportionment.

Figure 6 Plans for Idaho, Montana, and West Virginia with zero county splits and 1-person deviation (or less)

Next, we consider Nebraska, Mississippi, and Iowa, which have three or four districts. Each admits

whole-county plans with 1-person deviation, see Figure 7. Iowa is a common test case for districting

algorithms (Fifield et al. 2020, Becker and Solomon 2022, McCartan and Imai 2023, McCartan 2023)

because it is the largest state that draws county-level plans in practice. Iowa was also the subject of

a districting contest hosted by Dave Wasserman of the Cook Political Report in which the task was

to find a contiguous, whole-county plan with the smallest deviation. The winner, Cory McCartan,

used a carving strategy to find a plan with a 5-person deviation (Burger 2021). Meanwhile, our

default implementation finds plans with 1-person deviation; in fact, it finds 112 of them.

Figure 7 Plans for Nebraska, Mississippi, and Iowa with zero county splits and 1-person deviation

By increasing the default parameter to t = 25, our implementation finds 1,104 plans for Iowa

that have 1-person deviation. Figure 8 summarizes their compactness in terms of Polsby-Popper
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scores and number of cut edges. We see that the 1-person plans are less compact than the enacted

plan, which is not surprising given that the enacted plan’s deviation is nearly 100 times larger.

For example, the enacted plan has 51 cut edges, while the most compact 1-person plan from our

collection has 61 cut edges. Figure 9 summarizes their partisan performance according to the 2016-

2020 composite scores on DRA (2024), which DRA generated using data from Voting and Election

Science Team (2024). Among the 1-person plans, one or two districts have a Democratic majority,

while the enacted plan has none. This is similar to observations of Kenny et al. (2023) and McCartan

et al. (2022), although our approach does not come with the same statistical properties.

Figure 8 Compactness summary of the 1,104 generated plans for Iowa that have 1-person deviation.
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Figure 9 Partisan makeup of the 1,104 generated plans for Iowa that have 1-person deviation.

We conclude that k−1 county splits should not be assumed minimum, even when constrained by

contiguity and 1-person deviation. In fact, some states admit hundreds, thousands, or tens of thou-

sands of such plans with zero county splits. While they are not necessarily compact, they do exist.

5. Conclusion

As we have seen, it is not unusual for a state to admit a districting plan with fewer than k − 1

county splits, even when subjected to 1-person deviation. These counterexamples (or “accidental

degeneracies” in the words of Nagle (2022)) are not rare flukes. This runs contrary to statements

made by Autry et al. (2021) who wrote that “Given the extremely tight population constraints on

congressional districts, it is reasonable to assume that there is no subset of counties that perfectly

can accommodate a subset of the congressional districts.” Not only do these county clusters exist,

but in fact states like Iowa and Montana admit literally hundreds, thousands, or tens of thousands

of entire plans satisfying 1-person deviation in which all counties are kept whole. This finding runs

counter to many people’s intuitions and can be chalked up to combinatorial explosion.

The optimization methods proposed in this paper can assist in the drawing of maps that simulta-

neously satisfy good government criteria (e.g., compactness, preservation of political subdivisions),

minority representation, and partisan fairness. Indeed, our approach is flexible, providing mapmak-

ers a “menu” of compact county clusters to choose from. Each cluster can be divided into districts

however one chooses, either assisted by computer methods or by hand. To achieve fewer than k−1

county splits, the user need only to use two county clusters and to divide each cluster of size k′

into districts using k′ − 1 county splits. The methodological advances proposed in this paper can

assist mapmakers in this task.
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To be clear, we make no normative claims about how many county splits is best in practice.

It may well be that k − 1 county splits (or more) can be justified when seeking to satisfy other

criteria. Courts have also stated that they would like to avoid “county-split beauty contests” (Allen

v. Milligan 2023). But, we should not treat a mathematical suspicion about splits as fact until it

has been verified, nor should we confuse a normative belief with a fact about reality.
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